梯度下降算法实现

2024-08-31 03:32
文章标签 算法 实现 梯度 下降

本文主要是介绍梯度下降算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分治方法:先分成n×n个点进行搜索,选择最低的点,对最低的点再分成n×n份再次进行搜索,选择最小的值,反复如此,找到最小值。但是这对于凸函数是较为有用的,对于不规则的函数,可能搜索到的是极小值点(局部最优点),而不是最小值点(全局最优点)。

Gradient Descent Algorithm : 梯度下降算法(贪心思想,局部最优)
Gradient : 梯度,梯度大于0上升,梯度小于0下降,所以参数向梯度的反方向更新。
w = w − x g ′ ( w ) w=w-xg'(w)w=w−xg 

 (w)
x:学习率

损失函数的局部最优点比较少,但是我们有可能遇到鞍点,鞍点的导数等于0(梯度等于0, g ′ ( w ) = 0 g'(w)=0g 

 (w)=0),这时候参数无法更新。

对损失函数求导,求参数更新公式:

import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]w = 1.0  # y = x * w, w的初始值def forward(x):return x * wdef cost(xs, xy):cost = 0for x, y in zip(xs, xy):y_pred = forward(x)cost += (y_pred - y) ** 2return cost / len(xs)def gradient(xs, ys):grad = 0for x, y in zip(xs, ys):grad += 2 * x * (x * w - y)return grad / len(xs)def gradient(xs, ys):grad = 0for x, y in zip(xs, ys):grad += 2 * x * (x * w - y)return grad / len(xs)loss_list = []
trainnum_list = []
print("Predict (before training)", 4, forward(4)) # 训练前x = 4,对应预测的y值
for epoch in range(100):cost_val = cost(x_data, y_data)grad_val = gradient(x_data, y_data)w -= 0.01 * grad_valprint("Epoch: ", epoch, "w = ", w, "loss = ", cost_val)loss_list.append(cost_val)trainnum_list.append(epoch)
print("Predict(after training)", 4, forward(4))  # 训练后x = 4,对应预测的y值

 

画出loss的变化趋势:

plt.plot(trainnum_list, loss_list)
plt.ylabel("Cost")
plt.xlabel("Epoch")
plt.show()

 

 

import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]w = 1.0  # y = x * w, w的初始值def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) ** 2def gradient(x, y):return 2 * x * (x * w - y)loss_list = []
trainnum_list = []
print("Predict (before training)", 4, forward(4)) # 训练前x = 4,对应预测的y值
for epoch in range(100):for x, y in zip(x_data, y_data):grad = gradient(x, y)w -= 0.01 * gradprint("\tgrad", x, y, grad)l = loss(x, y)print("Epoch: ", epoch, "w = ", w, "loss = ", l)loss_list.append(l)trainnum_list.append(epoch)
print("Predict(after training)", 4, forward(4))  # 训练后x = 4,对应预测的y值plt.plot(trainnum_list, loss_list)
plt.ylabel("Loss")
plt.xlabel("Epoch")
plt.show()

这篇关于梯度下降算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122760

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换