ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集

本文主要是介绍ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天介绍一个我们新提出的时空动作检测数据集MultiSports,同时也是DeeperAction比赛的赛道二。首先介绍一下什么是时空动作检测任务 (Spatio-Temporal Action Detection): 输入一段未剪辑的视频 (untrimmed video),输出视频中人物的动作类别、动作发生的时序区间以及在此区间内的人物框。

现有数据集主要分为两大类:

  • 以UCF101-24和JHMDB为代表的密集标注数据集 (25FPS),这类数据集每个视频只有一种动作,大部分视频是单人在做一些语义简单的重复动作,动作类别与背景高度相关。

  • 以AVA为代表的稀疏标注数据集 (1FPS),由于稀疏标注,他们没有给出明确的动作边界,现有的方法更像是instance级别的动作识别,弱化时序定位;同时动作类别是日常的原子动作,运动速度慢、形变小,跟踪难度较低,分类不需要复杂的人与物与环境的建模和推理。

论文信息

论文链接:MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized Sports Actions

比赛主页链接:DeeperAction/MultiSports

GitHub链接:MCG-NJU/MultiSports

研究动机

基于对现有数据集的分析,我们认为他们不能满足现实应用对时空动作检测技术的需求,需要提出一个新的数据集来推动这个领域的进步,我们希望这个数据集满足以下特征:

  • 多人:在同一场景下,不同的人做不同的细粒度动作,减少背景提供的信息。

  • 分类:细粒度动作类别,定义准确,需要刻画人物本身动作,长时信息建模,人与人、与物、与环境的关系建模,推理。

  • 时序:动作边界定义准确。

  • 跟踪:运动速度快,形变大,存在遮挡。

基于以上特点我们以集体运动作为数据集背景,选择了足球、篮球、排球、健美操四种运动共66种动作。

应用场景

除了学术研究,我们的MultiSports还有很多的落地场景。结合Re-ID技术,球类领域我们可以做每位球员的技术统计 (目前是人工统计),例如在篮球中如果一个人接到队友传球之后没有任何其他动作直接投篮成功,则记为传球队友的一次助攻,如果一个人在投篮时有人来干扰投篮,那么这个投篮的难度指数会随着干扰投篮人数的增多而增大,这位球员成功后投篮技术评估则会更高,这些为制定训练计划、比赛策略和俱乐部之间球员交易提供信息,同时也可用于比赛解说、特效制作等;多人操领域我们可以做AI裁判,对运动员表现进行打分,在即将到来的东京奥运会,已将AI裁判引入了单人体操运动。我们相信竞技体育是计算机视觉一个很好的落地场景,而时空动作检测是其中一个很重要的技术。

标注手册

这篇关于ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438447

相关文章

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee