【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、数值积分法
    • 1. 一般步骤
    • 2. 数值方法
  • 二、欧拉方法(Euler Method)
    • 1. 向前欧拉法(前向欧拉法)
    • 2. 向后欧拉法(后向欧拉法)
      • a. 基本理论
      • b. 算法实现

  常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(Ordinary Differential Equations, ODEs)的问题。

一、数值积分法

1. 一般步骤

  1. 确定微分方程:

    • 给定微分方程组 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x))
  2. 确定初始条件:

    • 初值问题包含一个初始条件 y ( a ) = y 0 y(a) = y_0 y(a)=y0,其中 a a a 是定义域的起始点, y 0 y_0 y0 是初始值。
  3. 选择数值方法:

    • 选择适当的数值方法来近似解(需要考虑精度、稳定性和计算效率),常见的数值方法包括欧拉方法、改进的欧拉方法、Runge-Kutta 方法等。
  4. 离散化定义域:

    • 将定义域 [ a , b ] [a, b] [a,b] 分割为若干小步,即选择合适的步长 h h h。通常,较小的步长能够提高数值解的精度,但也增加计算成本。
  5. 数值迭代:

    • 使用选定的数值方法进行迭代计算:根据选择的方法,计算下一个点的函数值,并更新解。
  6. 判断停止条件:

    • 判断是否达到满足指定精度的近似解:可以使用某种误差估计方法,例如控制局部截断误差或全局误差。
  7. 输出结果:

    • 最终得到在给定定义域上满足初值问题的近似解。

2. 数值方法

  1. 欧拉方法(Euler Method):

    • 基本思想:根据微分方程的定义,使用离散步长逼近导数,进而逼近下一个点的函数值。
    • 公式: y n + 1 = y n + h f ( t n , y n ) y_{n+1} = y_n + h f(t_n, y_n) yn+1=yn+hf(tn,yn)
      其中, y n y_n yn是第 n n n 步的函数值, h h h是步长, f ( t n , y n ) f(t_n, y_n) f(tn,yn) 是在点 ( t n , y n ) (t_n, y_n) (tn,yn) 处的导数。
  2. 改进的欧拉方法(Improved Euler Method 或梯形法 Trapezoidal Rule):

    • 基本思想:使用两次近似来提高精度,首先使用欧拉方法计算中间点,然后用该点的导数估计值来计算下一个点。
    • 公式: y n + 1 = y n + h 2 [ f ( t n , y n ) + f ( t n + 1 , y n + h f ( t n , y n ) ) ] y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))] yn+1=yn+2h[f(tn,yn)+f(tn+1,yn+hf(tn,yn))]
  3. Runge-Kutta 方法:

    • 基本思想:通过多个阶段的计算来提高精度。其中最常见的是四阶 Runge-Kutta 方法。
    • 公式:
      k 1 = h f ( t n , y n ) k_1 = hf(t_n, y_n) k1=hf(tn,yn) k 2 = h f ( t n + h 2 , y n + k 1 2 ) k_2 = hf(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}) k2=hf(tn+2h,yn+2k1) k 3 = h f ( t n + h 2 , y n + k 2 2 ) k_3 = hf(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}) k3=hf(tn+2h,yn+2k2) k 4 = h f ( t n + h , y n + k 3 ) k_4 = hf(t_n + h, y_n + k_3) k4=hf(tn+h,yn+k3) y n + 1 = y n + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) yn+1=yn+61(k1+2k2+2k3+k4)

  这些方法中,步长 h h h 是一个关键参数,它决定了离散化的程度,选择合适的步长对于数值解的准确性和稳定性非常重要。

二、欧拉方法(Euler Method)

1. 向前欧拉法(前向欧拉法)

【计算方法与科学建模】常微分方程初值问题的数值积分法:欧拉方法(向前Euler及其python实现)

  • 向前差商近似微商:
    • 在节点 X n X_n Xn 处,通过向前差商 y ( X n + 1 ) − y ( X n ) h \frac{y(X_{n+1}) - y(X_n)}{h} hy(Xn+1)y(Xn) 近似替代微分方程 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x)) 中的导数项,得到 y ′ ( X n ) ≈ y ( X n + 1 ) − y ( X n ) h = f ( X n , y ( X n ) ) y'(X_n) \approx \frac{y(X_{n+1}) - y(X_n)}{h} = f(X_n, y(X_n)) y(Xn)hy(Xn+1)y(Xn)=f(Xn,y(Xn))
    • 这个近似通过将差商等于导数的思想,将微分方程转化为递推关系式。
  • 递推公式:
    • 将上述近似公式改为等式,得到递推公式 y n + 1 = y n + h f ( X n , y n ) y_{n+1} = y_n + hf(X_n, y_n) yn+1=yn+hf(Xn,yn)
    • 这个公式是 Euler 方法的核心,通过这个公式可以逐步计算得到近似解的数值。

2. 向后欧拉法(后向欧拉法)

a. 基本理论

  向后 Euler 方法的核心思想是从微分方程的 y ′ ( X n + 1 ) = f ( x n + 1 , y ( X n + 1 ) ) y'(X_{n+1}) = f(x_{n+1}, y(X_{n+1})) y(Xn+1)=f(xn+1,y(Xn+1)) 出发,使用向后差商 y ( X n + 1 ) − y ( X n ) h \frac{y(X_{n+1}) - y(X_n)}{h} hy(Xn+1)y(Xn) 近似微商 y ′ ( X n + 1 ) y'(X_{n+1}) y(Xn+1),然后通过这个近似来得到递推公式。具体而言,递推公式为:

y n + 1 = y n + h f ( X n + 1 , y n + 1 ) , n = 0 , 1 , … y_{n+1} = y_n + hf(X_{n+1}, y_{n+1}), \quad n = 0, 1, \ldots \ yn+1=yn+hf(Xn+1,yn+1),n=0,1, 

这里, y n + 1 y_{n+1} yn+1 是在 X n + 1 X_{n+1} Xn+1 处的近似解, h h h 是步长。

  对比向前 Euler 方法和向后 Euler 方法,可以注意到两者的关键区别:

  1. 显式 vs. 隐式:

    • 向前 Euler 方法给出了一个显式的递推公式,可以直接计算 y n + 1 y_{n+1} yn+1
    • 向后 Euler 方法给出了一个隐式的递推公式,其中 y n + 1 y_{n+1} yn+1出现在方程的右侧,需要通过求解非线性方程来获得。
  2. 求解方式:

    • 向前 Euler 方法的解可以通过简单的迭代计算得到。
    • 向后 Euler 方法的解需要通过迭代求解非线性方程,通常,可以使用迭代法,如牛顿迭代法,来逐步逼近方程的解。
  3. 具体的迭代过程

    • 初始值:使用向前 Euler 公式给出一个初值,例如 y n + 1 ( 0 ) = y n + h f ( x n + 1 , y n ) y_{n+1}^{(0)} = y_n + hf(x_{n+1}, y_n) yn+1(0)=yn+hf(xn+1,yn),其中 y n + 1 ( 0 ) y_{n+1}^{(0)} yn+1(0) 是迭代的初值。

    • 迭代公式:使用迭代公式 y n + 1 ( k + 1 ) = y n + h f ( x n + 1 , y n + 1 ( k ) ) , k = 0 , 1 , … y_{n+1}^{(k+1)} = y_n + hf(x_{n+1}, y_{n+1}^{(k)}), \quad k = 0, 1, \ldots yn+1(k+1)=yn+hf(xn+1,yn+1(k)),k=0,1,计算 y n + 1 y_{n+1} yn+1 的逼近值。

    • 重复迭代,直到满足收敛条件,得到 y n + 1 y_{n+1} yn+1 的近似解。

  向后 Euler 方法在处理某些问题(例如刚性问题)时可能更为稳定,但由于涉及隐式方程的求解,其计算成本可能较高。

b. 算法实现

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolvedef forward_euler(f, y0, a, b, h):"""使用向前欧拉法求解一阶常微分方程初值问题Parameters:- f: 函数,表示微分方程的右侧项,形式为 f(x, y)- y0: 初始条件,表示在 x=a 处的函数值- a: 区间起点- b: 区间终点- h: 步长Returns:- x_values: 区间 [a, b] 上的离散节点- y_values: 对应节点上的函数值的近似解"""num_steps = int((b - a) / h) + 1  # 计算步数x_values = np.linspace(a, b, num_steps)  # 生成离散节点y_values = np.zeros(num_steps)  # 初始化结果数组y_values[0] = y0  # 设置初始条件# 使用向前欧拉法进行逐步迭代for i in range(1, num_steps):x = x_values[i - 1]y = y_values[i - 1]y_values[i] = y + h * f(x, y)return x_values, y_valuesdef backward_euler(f, y0, a, b, h):"""使用向后欧拉法求解一阶常微分方程初值问题Parameters:- f: 函数,表示微分方程的右侧项,形式为 f(x, y)- y0: 初始条件,表示在 x=a 处的函数值- a: 区间起点- b: 区间终点- h: 步长Returns:- x_values: 区间 [a, b] 上的离散节点- y_values: 对应节点上的函数值的近似解"""num_steps = int((b - a) / h) + 1  # 计算步数x_values = np.linspace(a, b, num_steps)  # 生成离散节点y_values = np.zeros(num_steps)  # 初始化结果数组y_values[0] = y0  # 设置初始条件# 使用向后欧拉法进行逐步迭代for i in range(1, num_steps):x = x_values[i]# 定义非线性方程equation = lambda y_next: y_next - y_values[i - 1] - h * f(x, y_next)# 利用 fsolve 求解非线性方程,得到 y_values[i]y_values[i] = fsolve(equation, y_values[i - 1])[0]return x_values, y_values# 示例:求解 y' = y -2x/y,初始条件 y(0) = 1 在区间 [0, 1] 上的近似解
def example_function(x, y):return y - 2 * x / ya, b = 0, 1  # 区间 [a, b]
y0 = 1  # 初始条件 y(0) = 1
h = 0.05  # 步长
x_values0, y_values0 = forward_euler(example_function, y0, a, b, h)x_values, y_values = backward_euler(example_function, y0, a, b, h)# 绘制结果
plt.plot(x_values0, y_values0, label='Forward Euler')
plt.plot(x_values, np.sqrt(1 + 2 * x_values), label='Exact Solution')
plt.plot(x_values, y_values, label='Backward Euler')
plt.title('h = {}'.format(h))
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
  • h = 0.1
    在这里插入图片描述

  • h = 0.05
    在这里插入图片描述

  • h = 0.02
    在这里插入图片描述

这篇关于【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435279

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Git中恢复已删除分支的几种方法

《Git中恢复已删除分支的几种方法》:本文主要介绍在Git中恢复已删除分支的几种方法,包括查找提交记录、恢复分支、推送恢复的分支等步骤,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录1. 恢复本地删除的分支场景方法2. 恢复远程删除的分支场景方法3. 恢复未推送的本地删除分支场景方法4. 恢复