GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

2023-11-29 11:15

本文主要是介绍GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

文章目录

  • GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
    • Pretraining 预训练阶段
    • Supervised FineTuning (SFT)监督微调阶段
    • Reward Modeling 奖励评价建模
    • Reinforment Learning RLHF 强化学习

大模型常遇到一些概念性的问题,比如: 什么预训练?什么是pretraining?什么是Base model,什么是SFT model?
CPT和ChatGPT是一样的吗?

以GPT为例,LLM训练流程分为4个阶段:预训练,监督微调训练,奖励评价训练,强化学习。分别生成预训练模型(Base model,基础模型),如GPT3,GPT4;监督精调模型SFT模型,RM奖励评价模型,和最后的生成模型,如ChatGPT。

Andrej Karpathy的这张总结的很好,下面以此作为阐述。
GPT训练流程

Pretraining 预训练阶段

预训练阶段通过互联网的海量数据,训练一个算法基本原型,获得自然语言隐含的大量通用特征。可以理解第一步是粗调,相当于从粗矿中炼矿,从原油中炼油。

训练数据:
来自互联网的大量文本数据,具有低质量,数量巨大特点,TB级别。以LLaMA模型为例,训练数据共1.4T tokens。
数据来源种类也多样化,绝大部分是互联网抓取公开的数据,还有github,wikipedia,arXiv等专业网站数据。
模型类型:
自然语言建模,生成模型,预测下一个token(算法的处理单位,可以是词语,符号,短语,句子等)
训练结果:
base model 基本模型
计算资源:
算力需要很大,1000块以上的GPU;
训练周期:
训练时间耗费几个月,占据训练时间的99%
代表模型:
预训练模型代表,如GPT,LLaMA等等

Supervised FineTuning (SFT)监督微调阶段

预训练的训练数据良莠不齐,直接用到业务场景效果不是很好,接下来需要对模型进行精调。因此训练数据中,问题覆盖应该具有多样性,而且问题可能有很多种回答。也可以用辅助模型的最佳的回应作为引导标注,满足监督训练的条件。

训练数据:
训练数据需要人工标注,人工编写的问题和回答,形成问答对。数据质量高,但数量少。在10~100K量级。
模型类型:
自然语言建模,预测下一个token。基于base model建模的,生成SFT 模型。
训练结果:
SFT model SFT精调模型
计算资源:
算力根据模型和场景,1-100块的GPU资源;
训练周期:
训练以天为单位,几天到几十天。

Reward Modeling 奖励评价建模

在监督微调阶段,获得精调的自然语言模型,一个问题有多种回答,到底哪种最符合呢?这就需要建立明确的价值观体系,好坏之分的标准。在标准尺度的基础上,进一步判别不同回答的优劣,根据训练者的价值,筛选和奖励最好的回答。这个阶段的关键是评价。

增加答案的价值观判断,本质上是选择最佳路径,在多种回答中,按分数排序,选择最好的问题答案。

训练数据:
训练数据需要标注,人工编写的问题和答案,形成具有价值观偏好的问答对,要训练模型哪个是好的,哪个是不好的回答。数量质量高,但数量少。在10-1000K的量级。
模型类型:
二值分类评价模型,区分好和不好的回答。基于SFT模型,生成RM模型。
训练结果:
RM模型,奖励评价模型不能单独部署。
计算资源:
算力根据模型和场景,1-100块的GPU资源;
训练周期:
训练以天为单位,几天到几十天。

Reinforment Learning RLHF 强化学习

在SFT和RM模型基础上,用强化学习模型,根据人工编写问题答案对,和奖励评价模型,对SFT精调模型进行强化训练。多种路径中选择最佳路径,多种答案中,选择最大奖励的答案。

训练数据:
训练数据和前面一样需要标注,通过价值观偏好RM模型获得评分。数量质量高,但数量少。在10-100K量级。
模型类型:
强化学习模型,预训练模型一样结果形式,奖励最大的,生成下一个token。
训练结果:
带价值观判断的生成模型,代表模型:如:ChatGPT,Claude等。
计算资源:
算力根据模型和场景,1-100块的GPU资源。
训练周期:
训练以天为单位,几天到几十天。

点个赞 点个赞 点个赞

觉得有用 收藏 收藏 收藏

End


GPT专栏文章:
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

决策引擎专栏:
Falcon构建轻量级的REST API服务

决策引擎-利用Drools实现简单防火墙策略

这篇关于GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432608

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2