本文主要是介绍DL之GRU(Tensorflow框架):基于茅台股票数据集利用GRU算法实现回归预测(保存模型.ckpt.index、.ckpt.data文件),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
DL之GRU(Tensorflow框架):基于茅台股票数据集利用GRU算法实现回归预测(保存模型.ckpt.index、.ckpt.data文件)
目录
基于茅台股票数据集利用GRU算法实现回归预测(保存模型.ckpt.index、.ckpt.data文件)
#1、定义数据集
# 2、数据集预处理
# 2.1、数据集切分
# 2.2、数据维度转换
# 2.3、训练集、测试集进行MinMax归一化
# 2.4、依次构建train、test的时序性数据集矩阵
# (1)、for循环构建train时序性数据集矩阵
# (2)、for循环构建test时序性数据集矩阵
# 3、模构建GRU模型
# 3.1、模型构建
# 3.2、模型编译并定义优化器、损失函数
# 3.3、模型训练并保存checkpoint文件
# 使入模数据维度标准化
# 创建并保存weights.tx权重文件
# 模型训练过程可视化:绘制loss
epoch=5
# 3.4、模型评估
# 对真实、预测数据进行MinMax反归一化还原
# 画出真实数据和预测数据的对比曲线
# 输出模型评估指标
# 保存预测结果
相关文章
DL之GRU(Tensorflow框架):基于茅台股票数据集利用GRU算法实现回归预测(保存模型.ckpt.index、.ckpt.data文件)
基于茅台股票数据集利用GRU算法实现回归预测(保存模型.ckpt.index、.ckpt.data文件)
#1、定义数据集
# 数据集下载:http://quotes.money.163.com/trade/lsjysj_600519.html
日期 | 股票代码 | 名称 | 收盘价 | 最高价 | 最低价 | 开盘价 | 前收盘 | 涨跌额 | 涨跌幅 | 换手率 | 成交量 | 成交金额 | 总市值 | 流通市值 |
2022/6/27 | '600519 | 贵州茅台 | 2010.55 | 2049.94 | 2000.3 | 2019.94 | 2009.01 | 1.54 | 0.0767 | 0.3193 | 4011517 | 8124448900 | 2.53E+12 | 2.53E+12 |
2022/6/24 | '600519 | 贵州茅台 | 2009.01 | 2020 | 1965 | 1970 | 1957.1 | 51.91 | 2.6524 | 0.3155 | 3963465 | 7921199792 | 2.52E+12 | 2.52E+12 |
2022/6/23 | '600519 | 贵州茅台 | 1957.1 | 1965.04 | 1940 | 1942.7 | 1936 | 21.1 | 1.0899 | 0.2137 | 2684352 | 5239860443 | 2.46E+12 | 2.46E+12 |
2022/6/22 | '600519 | 贵州茅台 | 1936 | 1958 | 1932 | 1955 | 1945.74 | -9.74 | -0.5006 | 0.1564 | 1964665 | 3813775294 | 2.43E+12 | 2.43E+12 |
2022/6/21 | '600519 | 贵州茅台 | 1945.74 | 1966.99 | 1928 | 1949 | 1942.02 | 3.72 | 0.1916 | 0.1888 | 2371702 | 4617805127 | 2.44E+12 | 2.44E+12 |
2022/6/20 | '600519 | 贵州茅台 | 1942.02 | 1970 | 1930 | 1950 | 1951 | -8.98 | -0.4603 | 0.2784 | 3497478 | 6802792459 | 2.44E+12 | 2.44E+12 |
2022/6/17 | '600519 | 贵州茅台 | 1951 | 1952 | 1878.09 | 1878.09 | 1877 | 74 | 3.9425 | 0.4023 | 5054161 | 9749530916 | 2.45E+12 | 2.45E+12 |
2022/6/16 | '600519 | 贵州茅台 | 1877 | 1907.63 | 1875.33 | 1894.59 | 1875.1 | 1.9 | 0.1013 | 0.214 | 2688670 | 5087605391 | 2.36E+12 | 2.36E+12 |
2022/6/15 | '600519 | 贵州茅台 | 1875.1 | 1905 | 1862.99 | 1870 | 1871 | 4.1 | 0.2191 | 0.268 | 3366362 | 6354869100 | 2.36E+12 | 2.36E+12 |
2022/6/14 | '600519 | 贵州茅台 | 1871 | 1875.42 | 1832 | 1834 | 1856 | 15 | 0.8082 | 0.2342 | 2941623 | 5467949348 | 2.35E+12 | 2.35E+12 |
2022/6/13 | '600519 | 贵州茅台 | 1856 | 1892 | 1848.08 | 1890 | 1900.6 | -44.6 | -2.3466 | 0.2926 | 3675518 | 6847248995 | 2.33E+12 | 2.33E+12 |
2022/6/10 | '600519 | 贵州茅台 | 1900.6 | 1907 | 1835 | 1845.01 | 1853 | 47.6 | 2.5688 | 0.3769 | 4734462 | 8882462598 | 2.39E+12 | 2.39E+12 |
2022/6/9 | '600519 | 贵州茅台 | 1853 | 1888.35 | 1849 | 1872 | 1865.6 | -12.6 | -0.6754 | 0.2096 | 2632902 | 4897066622 | 2.33E+12 | 2.33E+12 |
2022/6/8 | '600519 | 贵州茅台 | 1865.6 | 1882 | 1825 | 1825 | 1817.9 | 47.7 | 2.6239 | 0.3531 | 4435381 | 8236953846 | 2.34E+12 | 2.34E+12 |
2022/6/7 | '600519 | 贵州茅台 | 1817.9 | 1825 | 1770.31 | 1784.14 | 1788 | 29.9 | 1.6723 | 0.279 | 3504859 | 6356031009 | 2.28E+12 | 2.28E+12 |
2022/6/6 | '600519 | 贵州茅台 | 1788 | 1795 | 1758 | 1790 | 1786 | 2 | 0.112 | 0.2925 | 3674126 | 6535329352 | 2.25E+12 | 2.25E+12 |
2022/6/2 | '600519 | 贵州茅台 | 1786 | 1795.8 | 1780 | 1787.97 | 1788.25 | -2.25 | -0.1258 | 0.1347 | 1691473 | 3019718032 | 2.24E+12 | 2.24E+12 |
2022/6/1 | '600519 | 贵州茅台 | 1788.25 | 1814.78 | 1779 | 1802 | 1804.03 | -15.78 | -0.8747 | 0.1732 | 2176001 | 3897858999 | 2.25E+12 | 2.25E+12 |
2022/5/31 | '600519 | 贵州茅台 | 1804.03 | 1814.9 | 1766.98 | 1774.77 | 1778.41 | 25.62 | 1.4406 | 0.3244 | 4075082 | 7329201058 | 2.27E+12 | 2.27E+12 |
2022/5/30 | '600519 | 贵州茅台 | 1778.41 | 1790.55 | 1766 | 1766 | 1755.16 | 23.25 | 1.3247 | 0.2744 | 3446569 | 6135631304 | 2.23E+12 | 2.23E+12 |
# 2、数据集预处理
# 2.1、数据集切分
training_set [2019.94 1970. 1942.7 ... 26.07 25.92 26.5 ]
test_set [26.5 0. 25.69 25.6 26.3 25.92 26. 26.24 26.48 26. 25.8 25.825.98 25.78 26.05 26.13 27.2 26.75 26.95 26.7 26.22 26.08 26.03 26.2526.5 26.6 27.11 27.1 27.45 26.97 26.79 27.5 27.91 27.78 27.6 27.927.68 27.7 28. 28.15 28.12 28.36 27.98 28.4 28.68 28.97 28.8 28.9928.75 29.11 29.01 29. 29.46 30. 30.3 30.35 30.52 30.63 30.4 30.4530.56 30.55 30.89 30.73 31.15 31.15 31. 31. 30.59 30.79 30.5 30.9830.98 30.7 30.8 31.21 31.42 31.43 31.32 31.44 31.3 31.28 31.52 31.6832.2 32.5 32.61 36.3 36.45 36.68 36.37 36.05 35.95 35.68 36.01 35.9935.63 36.12 36.18 36.18 36.06 36.68 36.75 36.8 37.08 36.7 36.9 37.2839.04 35. 34.98 34.9 34.7 34.55 34.9 35.1 34.8 34.75 35. 34.834.38 34.5 34.9 34.9 35. 34.88 35.21 35.2 35. 35.01 35.88 35.135.54 34.99 34.89 35.25 35.68 35.4 35.57 36.05 36. 36.31 36.48 36.235.5 35.1 35.5 36.19 36. 36.39 37. 38.5 37.88 38.46 37.62 37.4937.43 37. 37.3 37.78 36.97 37.02 37.61 37.16 38. 38.01 38.15 38.738.49 38.92 39.3 38.8 38.1 38.12 38.02 38.11 38.31 39.45 39.69 38.5538.2 38.8 38.06 37.35 37.95 38. 37.85 37.99 37.6 37.18 37.86 37.9337.18 37.5 36. 35.6 35.2 37. 37.24 37.36 36.65 35.8 36.3 34.836.2 36.48 35.98 35.7 37.01 36.98 36.5 37. 37.15 38.72 37.67 37.337.22 36.54 36.45 35.99 34.7 35.9 35.9 35.48 35.11 35.02 35.61 35.636. 36. 36.1 35.9 37. 36.25 35.35 34.83 35.01 35.05 34.58 35.35.01 35.22 35.48 35.2 34.15 36.2 33.65 33.64 33.28 34.4 33.7 33.3535. 34.8 35. 35.28 35.05 35. 35.25 34.88 34.7 35.7 36.78 36.33.3 34. 34.2 34.79 35.13 35.9 35.9 36.01 37.3 36.6 37. 36.936.08 36.11 36.28 36.06 36.28 36.9 36.3 35.88 36.08 36.01 36.01 35.3336.8 35.4 36.5 37.35 37.61 37.01 37.2 37.15 36.28 36.98 34.99 34.51]
# 2.2、数据维度转换
进行MinMaxScaler之前,需要将数据从(4754,)→(4754, 1)
before reshape <class 'numpy.ndarray'> (4752,) (300,)
after reshape <class 'numpy.ndarray'> (4752, 1) (300, 1)
# 2.3、训练集、测试集进行MinMax归一化
# 2.4、依次构建train、test的时序性数据集矩阵
# (1)、for循环构建train时序性数据集矩阵
# 提取训练集中连续X_num=60天的开盘价,作为输入特征x_train;以第61天的数据作为label,for循环共构建4752-300-60=4392组数据
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | |
0 | 0.78050835 | 0.761211447 | 0.750662679 | 0.755415421 | 0.75309701 | 0.753483412 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 |
1 | 0.761211447 | 0.750662679 | 0.755415421 | 0.75309701 | 0.753483412 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 |
2 | 0.750662679 | 0.755415421 | 0.75309701 | 0.753483412 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 |
3 | 0.755415421 | 0.75309701 | 0.753483412 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 |
4 | 0.75309701 | 0.753483412 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 |
5 | 0.753483412 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 |
6 | 0.725697262 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 |
7 | 0.732072891 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 |
8 | 0.722571272 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 |
9 | 0.708660809 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 |
10 | 0.730299307 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 |
11 | 0.712915092 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 |
12 | 0.723344075 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 |
13 | 0.705183193 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 |
14 | 0.689394818 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 | 0.680059351 |
15 | 0.691659132 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 | 0.680059351 | 0.68014436 |
16 | 0.690874736 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 | 0.680059351 | 0.68014436 | 0.6847039 |
17 | 0.696295953 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 | 0.680059351 | 0.68014436 | 0.6847039 | 0.713220349 |
18 | 0.685774233 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 | 0.680059351 | 0.68014436 | 0.6847039 | 0.713220349 | 0.710979219 |
19 | 0.68238549 | 0.680063215 | 0.680453481 | 0.682103417 | 0.690113525 | 0.695523149 | 0.680063215 | 0.674271053 | 0.685345327 | 0.683884729 | 0.694363944 | 0.687795114 | 0.677362267 | 0.678135071 | 0.664611009 | 0.687795114 | 0.701315312 | 0.707115202 | 0.709433612 | 0.692818337 | 0.68281826 | 0.658169692 | 0.676203062 | 0.681226285 | 0.691736412 | 0.696176168 | 0.695523149 | 0.688231748 | 0.696373233 | 0.690886328 | 0.682771892 | 0.668088625 | 0.683931097 | 0.683158293 | 0.679294276 | 0.677362267 | 0.668451843 | 0.664611009 | 0.656110171 | 0.642006507 | 0.627902843 | 0.661519795 | 0.671566241 | 0.658814983 | 0.666110248 | 0.666156616 | 0.663838206 | 0.664611009 | 0.631380459 | 0.637562887 | 0.668475027 | 0.68238549 | 0.698614363 | 0.681651327 | 0.680059351 | 0.68014436 | 0.6847039 | 0.713220349 | 0.710979219 | 0.696295953 |
# 依次对x_train、y_train打乱数据并转为array格式
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | |
0 | 0.076739387 | 0.078284994 | 0.077284214 | 0.07651141 | 0.074355289 | 0.074142768 | 0.073563165 | 0.073470429 | 0.072821274 | 0.074420977 | 0.073458837 | 0.074119584 | 0.073161307 | 0.075348341 | 0.073416332 | 0.068300373 | 0.064706837 | 0.069938717 | 0.074003663 | 0.077601063 | 0.077183749 | 0.079977434 | 0.080379292 | 0.081337568 | 0.08172397 | 0.081140503 | 0.082033091 | 0.079989026 | 0.080174499 | 0.079687633 | 0.082276525 | 0.08085843 | 0.079212359 | 0.079869242 | 0.080692277 | 0.080286556 | 0.077226254 | 0.08384918 | 0.085201586 | 0.084231717 | 0.085008385 | 0.085684588 | 0.087771157 | 0.088486001 | 0.097087304 | 0.095634433 | 0.098532446 | 0.099691651 | 0.09930525 | 0.091523118 | 0.088486001 | 0.096600437 | 0.103536349 | 0.098532446 | 0.098648367 | 0.098532446 | 0.095302128 | 0.095970603 | 0.096608165 | 0.101044058 |
1 | 0.449385235 | 0.449771637 | 0.453998872 | 0.455954065 | 0.446294021 | 0.447066824 | 0.444748414 | 0.443589209 | 0.428326339 | 0.422723514 | 0.418473095 | 0.411904265 | 0.432468566 | 0.438295505 | 0.442430003 | 0.442236802 | 0.436247575 | 0.440807116 | 0.440497995 | 0.440494131 | 0.434701968 | 0.426973933 | 0.42851954 | 0.431610754 | 0.430065147 | 0.426973933 | 0.414605213 | 0.413488512 | 0.407653846 | 0.409972256 | 0.405660013 | 0.397220999 | 0.39800153 | 0.392646002 | 0.390385552 | 0.378094112 | 0.368434068 | 0.366888461 | 0.359740029 | 0.365149653 | 0.364763252 | 0.377325173 | 0.376741706 | 0.377321309 | 0.371730075 | 0.371706891 | 0.365524463 | 0.370292661 | 0.371834404 | 0.37094568 | 0.369013671 | 0.371525282 | 0.374036894 | 0.376915587 | 0.373959613 | 0.379176037 | 0.382522276 | 0.379033068 | 0.378403233 | 0.384489061 |
2 | 0.019961514 | 0.020201083 | 0.019629209 | 0.019895826 | 0.018933686 | 0.018740485 | 0.018431363 | 0.018203386 | 0.018160882 | 0.018218842 | 0.018593652 | 0.019049606 | 0.017310798 | 0.017368759 | 0.016163185 | 0.015649271 | 0.017194878 | 0.017233518 | 0.017252838 | 0.017001677 | 0.01758128 | 0.018508644 | 0.018570468 | 0.018697981 | 0.01893755 | 0.01893755 | 0.018547284 | 0.019277583 | 0.018933686 | 0.018732757 | 0.018744349 | 0.018740485 | 0.019590569 | 0.019706489 | 0.020286092 | 0.020208812 | 0.02040974 | 0.020046523 | 0.020089027 | 0.018972326 | 0.018674797 | 0.018006322 | 0.017959953 | 0.018354083 | 0.018810037 | 0.019126887 | 0.018895046 | 0.018663205 | 0.018632292 | 0.019242807 | 0.019351 | 0.01978377 | 0.019385776 | 0.019397368 | 0.018922094 | 0.018578196 | 0.01816861 | 0.018547284 | 0.018968462 | 0.018276803 |
3 | 0 | 0.034389756 | 0.034582957 | 0.032368875 | 0.034768429 | 0.032028841 | 0.029115372 | 0.02646852 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.022685647 | 0.022546542 | 0.021978532 | 0.022326293 | 0.022666327 | 0.022276061 | 0.022990904 | 0 | 0.022326293 | 0.018701845 | 0.019223487 | 0.019192575 | 0.018315443 | 0.018373403 | 0.017627648 | 0.017391943 |
4 | 0.101044058 | 0.096600437 | 0.09265914 | 0.095004598 | 0.097767371 | 0.098130588 | 0.100078053 | 0.103161539 | 0.101283627 | 0.100464455 | 0.098779743 | 0.102396464 | 0.097183904 | 0.099734156 | 0.101615932 | 0.102466016 | 0.104521673 | 0.101986878 | 0.100468319 | 0.106357082 | 0.110325428 | 0.110742741 | 0.104328472 | 0.100340806 | 0.098918848 | 0.097373241 | 0.093142142 | 0.094668429 | 0.097145264 | 0.099015448 | 0.098068764 | 0.09938253 | 0.09718004 | 0.095101199 | 0.094668429 | 0.094274299 | 0.097373241 | 0.097628266 | 0.097044799 | 0.095093471 | 0.098146044 | 0.099529363 | 0.097326873 | 0.102010062 | 0.10386479 | 0.09273642 | 0.088872402 | 0.092311378 | 0.080584085 | 0.080796606 | 0.078825957 | 0.077879273 | 0.077276486 | 0.07901143 | 0.078246354 | 0.076063184 | 0.074961939 | 0.075719287 | 0.075746335 | 0.075997496 |
5 | 0.073690678 | 0.073744774 | 0.074988988 | 0.076256385 | 0.079591032 | 0.080371564 | 0.081913307 | 0.076507546 | 0.076240929 | 0.076314346 | 0.074710778 | 0.075730879 | 0.076314346 | 0.074146632 | 0.07722239 | 0.076507546 | 0.078903237 | 0.078439555 | 0.083605747 | 0.079308959 | 0.078427963 | 0.077485143 | 0.074189136 | 0.068926344 | 0.067573938 | 0.066113339 | 0.064355211 | 0.067968068 | 0.071866861 | 0.070321254 | 0.067832827 | 0.070321254 | 0.064374531 | 0.063215326 | 0.063366023 | 0.063872209 | 0.063350567 | 0.062983485 | 0.063570816 | 0.063060766 | 0.063655824 | 0.064876854 | 0.065205295 | 0.066770222 | 0.065301896 | 0.064714565 | 0.064760933 | 0.06186292 | 0.06237297 | 0.06182428 | 0.061252405 | 0.06221841 | 0.06414269 | 0.064842078 | 0.067233904 | 0.065301896 | 0.064359075 | 0.065842858 | 0.065143471 | 0.064181331 |
6 | 0.019049606 | 0.017310798 | 0.017368759 | 0.016163185 | 0.015649271 | 0.017194878 | 0.017233518 | 0.017252838 | 0.017001677 | 0.01758128 | 0.018508644 | 0.018570468 | 0.018697981 | 0.01893755 | 0.01893755 | 0.018547284 | 0.019277583 | 0.018933686 | 0.018732757 | 0.018744349 | 0.018740485 | 0.019590569 | 0.019706489 | 0.020286092 | 0.020208812 | 0.02040974 | 0.020046523 | 0.020089027 | 0.018972326 | 0.018674797 | 0.018006322 | 0.017959953 | 0.018354083 | 0.018810037 | 0.019126887 | 0.018895046 | 0.018663205 | 0.018632292 | 0.019242807 | 0.019351 | 0.01978377 | 0.019385776 | 0.019397368 | 0.018922094 | 0.018578196 | 0.01816861 | 0.018547284 | 0.018968462 | 0.018276803 | 0.018160882 | 0.018933686 | 0.018895046 | 0.018160882 | 0.018160882 | 0.018350219 | 0.018044962 | 0.017967681 | 0.018276803 | 0.0176972 | 0.01761992 |
7 | 0.087535452 | 0.088482137 | 0.087713197 | 0.090147528 | 0.092006121 | 0.087666829 | 0.086940394 | 0.084621983 | 0.083447322 | 0.084618119 | 0.082342213 | 0.084544703 | 0.081994451 | 0.080282692 | 0.07959876 | 0.077906321 | 0.078516836 | 0.078725492 | 0.077496735 | 0.07728035 | 0.079208495 | 0.079135078 | 0.078277266 | 0.078053153 | 0.078091794 | 0.076306618 | 0.077183749 | 0.077272622 | 0.077662888 | 0.078439555 | 0.078482059 | 0.077767216 | 0.079985162 | 0.077666752 | 0.076507546 | 0.079115758 | 0.076163649 | 0.076932588 | 0.077705392 | 0.078501379 | 0.078891645 | 0.080754102 | 0.082218564 | 0.081144367 | 0.084235581 | 0.08432059 | 0.085077937 | 0.084475151 | 0.087125867 | 0.086940394 | 0.086546264 | 0.087114274 | 0.087635917 | 0.084235581 | 0.083269577 | 0.082840671 | 0.082848399 | 0.082612694 | 0.081217784 | 0.082110372 |
8 | 0.078825957 | 0.07952148 | 0.078748677 | 0.080023802 | 0.083115016 | 0.076893948 | 0.07728035 | 0.077821312 | 0.076893948 | 0 | 0.071441819 | 0.071472732 | 0.068238549 | 0.067427105 | 0.066665894 | 0.068702231 | 0.067628034 | 0.069629595 | 0.069127273 | 0.068586311 | 0.068779511 | 0.070325118 | 0.071870725 | 0.070518319 | 0.069552315 | 0.070904721 | 0.072284175 | 0.068694503 | 0.066461101 | 0.066310404 | 0.066468829 | 0.069057721 | 0.070518319 | 0.069583227 | 0.071097922 | 0.07071152 | 0.074382337 | 0.072570113 | 0.074196864 | 0.074579402 | 0.07370227 | 0.073029931 | 0.072662849 | 0.070904721 | 0.068779511 | 0.068199909 | 0.069042265 | 0.071097922 | 0.073026067 | 0.068045348 | 0.067658946 | 0.063694464 | 0.062098625 | 0.056607856 | 0.058551457 | 0.056406927 | 0.056287143 | 0.053713707 | 0.054660392 | 0.055641852 |
9 | 0.096310636 | 0.096527021 | 0.094710933 | 0.094579556 | 0.093748792 | 0.093644464 | 0.093895625 | 0.093115094 | 0.094784349 | 0.092357746 | 0.090804411 | 0.091963616 | 0.089826815 | 0.088486001 | 0.088219383 | 0.089220164 | 0.092558675 | 0.093041677 | 0.094668429 | 0.093122822 | 0.092910301 | 0.093316023 | 0.09285234 | 0.093397167 | 0.090108888 | 0.09051461 | 0.089838407 | 0.091577215 | 0 | 0.084235581 | 0.083845316 | 0.086940394 | 0.088486001 | 0.089065603 | 0.087794342 | 0.089606566 | 0.091546303 | 0.089904095 | 0.088721706 | 0.092125905 | 0.094382491 | 0.095433504 | 0.095827634 | 0.096013107 | 0.096986839 | 0.097295961 | 0.097550986 | 0.096144483 | 0.095302128 | 0.093702424 | 0.093938129 | 0.095124383 | 0.096407237 | 0.096310636 | 0.096940471 | 0.098493806 | 0.096600437 | 0.092972125 | 0.092690052 | 0.094857766 |
10 | 0.772370729 | 0.772842139 | 0.78632756 | 0.78632756 | 0.772803499 | 0.763116407 | 0.792123587 | 0.799851622 | 0.763143456 | 0.763916259 | 0.755415421 | 0.801768174 | 0.772803499 | 0.809511665 | 0.788259569 | 0.842355814 | 0.841969412 | 0.811443674 | 0.853561465 | 0.891811374 | 0.875254059 | 0.948616295 | 0.947132513 | 1 | 0.960208348 | 0.915308465 | 0.903020889 | 0.898384068 | 0.846606233 | 0.830763762 | 0.816165504 | 0.823035727 | 0.811903492 | 0.803715639 | 0.827630044 | 0.844287823 | 0.804874844 | 0.79946522 | 0.791350783 | 0.775894713 | 0.801053331 | 0.79639719 | 0.8172397 | 0.833082172 | 0.836173386 | 0.806806853 | 0.807579657 | 0.827672548 | 0.810284469 | 0.797842333 | 0.768939482 | 0.772795771 | 0.750005796 | 0.722571272 | 0.723730477 | 0.705801436 | 0.696678491 | 0.702478381 | 0.733386657 | 0.714831645 |
11 | 0.3091214 | 0.300620561 | 0.299867078 | 0.301393365 | 0.305249654 | 0.304484579 | 0.303904976 | 0.290709356 | 0.290237946 | 0.282169878 | 0.28099908 | 0.285473613 | 0.277436456 | 0.275118046 | 0.27820926 | 0.285937295 | 0.284090294 | 0.287482902 | 0.279751003 | 0.284051654 | 0.285937295 | 0.288255705 | 0.279754867 | 0.277703073 | 0.271833631 | 0.273989753 | 0.269720013 | 0.255005835 | 0.259267846 | 0.257343565 | 0.255025155 | 0.264781799 | 0.267390011 | 0.266230805 | 0.261207583 | 0.257347429 | 0.263139591 | 0.254967194 | 0.259275574 | 0.264685198 | 0.262977303 | 0.269901622 | 0.272026832 | 0.274345242 | 0.272335953 | 0.26936066 | 0.263525993 | 0.261980386 | 0.26275319 | 0.2650716 | 0.263603274 | 0.270469633 | 0.279368465 | 0.273572439 | 0.270867626 | 0.287482902 | 0.289843816 | 0.289801312 | 0.28747131 | 0.288873948 |
12 | 0.061051476 | 0.061360598 | 0.061256269 | 0.058609417 | 0.057960262 | 0.057921622 | 0.058153463 | 0.058083911 | 0.057284059 | 0.058420081 | 0.059073099 | 0.059884543 | 0.059042187 | 0.058118687 | 0.057527492 | 0.057110179 | 0.056414655 | 0.058582369 | 0.057284059 | 0.057110179 | 0.055672764 | 0.054869048 | 0.05525545 | 0.053566875 | 0.053818036 | 0.055228402 | 0.055100889 | 0.054134885 | 0.05437059 | 0.053392994 | 0.053632563 | 0.052747703 | 0.05254291 | 0.051410753 | 0.050579989 | 0.050425428 | 0.050000386 | 0.050518165 | 0.050541349 | 0.049683537 | 0.049115526 | 0.049304863 | 0.04864798 | 0.048879821 | 0.048899141 | 0.049401464 | 0.04868662 | 0.049656489 | 0.050309508 | 0.050154947 | 0.050970255 | 0.051005031 | 0.051491897 | 0.051159592 | 0.052554502 | 0.053787124 | 0.054702896 | 0.054637207 | 0.054181253 | 0.054505831 |
13 | 0.118857178 | 0.120905107 | 0.119842503 | 0.119251308 | 0.121909752 | 0.122682556 | 0.122535723 | 0.122137729 | 0.124819357 | 0.122010216 | 0.119409733 | 0.121148541 | 0.122025673 | 0.115843245 | 0.114000108 | 0.110897302 | 0.110974582 | 0.112064235 | 0.111109823 | 0.11090503 | 0.106260481 | 0.106368674 | 0.108180898 | 0.105785207 | 0.107048741 | 0.108103617 | 0.105719519 | 0.106206385 | 0.104602818 | 0.103443612 | 0.105622918 | 0.106801444 | 0.106840084 | 0.108965293 | 0.103169267 | 0.101627524 | 0.102551024 | 0.098918848 | 0.09718004 | 0.09765145 | 0.097369377 | 0.098331517 | 0.098304469 | 0.096492245 | 0.095379408 | 0.094730253 | 0.096244948 | 0.096990703 | 0.096932743 | 0.09891112 | 0.098153772 | 0.097508482 | 0.096407237 | 0.09665067 | 0.099425034 | 0.099112049 | 0.100464455 | 0.096812958 | 0.095591929 | 0.094989142 |
14 | 0.088099599 | 0.089258804 | 0.089305172 | 0.09059189 | 0.090727131 | 0.087519996 | 0.087319067 | 0.087326795 | 0.083729395 | 0.082786575 | 0.082091052 | 0.081990587 | 0.081808978 | 0.080487484 | 0.082604966 | 0.081302792 | 0.082241748 | 0.082110372 | 0.082110372 | 0.080700005 | 0.079212359 | 0.080866158 | 0.080197683 | 0.079451928 | 0.075773383 | 0.077728576 | 0.077589471 | 0.076893948 | 0.081229376 | 0.081577137 | 0.080178363 | 0.078949605 | 0.080294284 | 0.080197683 | 0.080294284 | 0.077585607 | 0.076909404 | 0.077894729 | 0.07731899 | 0.077326718 | 0.075228557 | 0.074656682 | 0.075240149 | 0.076893948 | 0.077608791 | 0.078296587 | 0.078640484 | 0.077666752 | 0.077060101 | 0.07680894 | 0.075031492 | 0.074390065 | 0.074482801 | 0.074107992 | 0.074560082 | 0.074915571 | 0.074776467 | 0.074471209 | 0.074455753 | 0.073223132 |
15 | 0.009273642 | 0.00937797 | 0.009273642 | 0.009111353 | 0.009115217 | 0.009088169 | 0.009092033 | 0.009177042 | 0.009188634 | 0.009149993 | 0.009235002 | 0.009041801 | 0.009103625 | 0.008983841 | 0.008960657 | 0.009003161 | 0.008922016 | 0.008922016 | 0.00888724 | 0.009003161 | 0.008918152 | 0.009034073 | 0.00882928 | 0.00879064 | 0.00888724 | 0.008918152 | 0.00880996 | 0.008883376 | 0.00888724 | 0.00890656 | 0.00888724 | 0.009003161 | 0.009146129 | 0.008979977 | 0.008794504 | 0.008763592 | 0.008694039 | 0.008539479 | 0.008241949 | 0.008191717 | 0.00829991 | 0.008346278 | 0.008427422 | 0.008288318 | 0.008265133 | 0.008261269 | 0.008292182 | 0.008369462 | 0.008404238 | 0.00833855 | 0.008346278 | 0.008164669 | 0.008191717 | 0.008160805 | 0.008160805 | 0.008153077 | 0.008180125 | 0.008191717 | 0.008176261 | 0.008075797 |
16 | 0.875254059 | 0.948616295 | 0.947132513 | 1 | 0.960208348 | 0.915308465 | 0.903020889 | 0.898384068 | 0.846606233 | 0.830763762 | 0.816165504 | 0.823035727 | 0.811903492 | 0.803715639 | 0.827630044 | 0.844287823 | 0.804874844 | 0.79946522 | 0.791350783 | 0.775894713 | 0.801053331 | 0.79639719 | 0.8172397 | 0.833082172 | 0.836173386 | 0.806806853 | 0.807579657 | 0.827672548 | 0.810284469 | 0.797842333 | 0.768939482 | 0.772795771 | 0.750005796 | 0.722571272 | 0.723730477 | 0.705801436 | 0.696678491 | 0.702478381 | 0.733386657 | 0.714831645 | 0.710979219 | 0.715542624 | 0.713104429 | 0.707308403 | 0.708467608 | 0.706253526 | 0.708962202 | 0.710979219 | 0.721006345 | 0.701319176 | 0.696566434 | 0.676975865 | 0.671570105 | 0.674657455 | 0.66692942 | 0.670407036 | 0.669502856 | 0.66692942 | 0.680646682 | 0.683927233 |
17 | 0.173540754 | 0.171937187 | 0.17312344 | 0.173880787 | 0.170982774 | 0.173880787 | 0.174197637 | 0.173382329 | 0.175001352 | 0.170886174 | 0.169645824 | 0.1659866 | 0.164240064 | 0.165766351 | 0.162134174 | 0.159630291 | 0.1598119 | 0.157806475 | 0.157806475 | 0.156276324 | 0.16081268 | 0.160820408 | 0.160213757 | 0.158811119 | 0.15904296 | 0.163057674 | 0.160561519 | 0.161844373 | 0.156415428 | 0.154800269 | 0.160356726 | 0.156913887 | 0.155719905 | 0.15247413 | 0.151083084 | 0.154340451 | 0.150998076 | 0.14887673 | 0.149943199 | 0.152242289 | 0.151852024 | 0.150314145 | 0.149019699 | 0.149228356 | 0.14799187 | 0.147222931 | 0.146813345 | 0.149162667 | 0.151593134 | 0.151481078 | 0.150901475 | 0.149363596 | 0.147025866 | 0.144166493 | 0.145503443 | 0.142775446 | 0.14356757 | 0.142987967 | 0.142937735 | 0.141809442 |
18 | 0.288622787 | 0.283108834 | 0.284391688 | 0.286516897 | 0.285550893 | 0.286876251 | 0.292506124 | 0.290690036 | 0.286826019 | 0.277436456 | 0.274345242 | 0.281686875 | 0.278220852 | 0.273186037 | 0.270481225 | 0.267390011 | 0.274252506 | 0.283819813 | 0.275233966 | 0.275890849 | 0.290574116 | 0.295717123 | 0.29598374 | 0.291346919 | 0.295682347 | 0.286323696 | 0.297142945 | 0.298765833 | 0.305257382 | 0.3091214 | 0.300620561 | 0.299867078 | 0.301393365 | 0.305249654 | 0.304484579 | 0.303904976 | 0.290709356 | 0.290237946 | 0.282169878 | 0.28099908 | 0.285473613 | 0.277436456 | 0.275118046 | 0.27820926 | 0.285937295 | 0.284090294 | 0.287482902 | 0.279751003 | 0.284051654 | 0.285937295 | 0.288255705 | 0.279754867 | 0.277703073 | 0.271833631 | 0.273989753 | 0.269720013 | 0.255005835 | 0.259267846 | 0.257343565 | 0.255025155 |
19 | 0.715731961 | 0.720264453 | 0.726435289 | 0.716775246 | 0.711404261 | 0.708274407 | 0.695523149 | 0.729526503 | 0.730337947 | 0.745341927 | 0.722571272 | 0.721025665 | 0.710789882 | 0.704186277 | 0.702547933 | 0.699000765 | 0.714070433 | 0.676203062 | 0.629062048 | 0.632926066 | 0.640974814 | 0.625970834 | 0.619402005 | 0.637562887 | 0.641040503 | 0.643358913 | 0.631411371 | 0.628289245 | 0.641426904 | 0.641824898 | 0.637176485 | 0.622114545 | 0.630990193 | 0.602400328 | 0.614301502 | 0.620174808 | 0.61399238 | 0.643355049 | 0.636650979 | 0.608582756 | 0.594239523 | 0.600920409 | 0.626828646 | 0.627771467 | 0.656882974 | 0.655337367 | 0.653018957 | 0.66924783 | 0.687798978 | 0.656882974 | 0.637949289 | 0.652632555 | 0.654131794 | 0.670043818 | 0.668475027 | 0.642972511 | 0.666543018 | 0.699391031 | 0.65804218 | 0.696682355 |
# (2)、for循环构建test时序性数据集矩阵
# 测试集:csv表格中后300天数据,for循环共构建300-60=240组数据。
# 将df格式数据转为array格式
# 3、模构建GRU模型
# 3.1、模型构建
# 3.2、模型编译并定义优化器、损失函数
# 3.3、模型训练并保存checkpoint文件
# 使入模数据维度标准化
x_train要reshape成符合RNN输入要求:[样本数, 循环核时间展开步数, 每个时间步输入特征个数]
before x_train.shape[0]: 4692
after x_train.shape: (4692, 60, 1)
# 创建并保存weights.tx权重文件
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
gru (GRU) (None, 60, 80) 19680
_________________________________________________________________
dropout (Dropout) (None, 60, 80) 0
_________________________________________________________________
gru_1 (GRU) (None, 100) 54300
_________________________________________________________________
dropout_1 (Dropout) (None, 100) 0
_________________________________________________________________
dense (Dense) (None, 1) 101
=================================================================
Total params: 74,081
Trainable params: 74,081
Non-trainable params: 0
_________________________________________________________________
# 模型训练过程可视化:绘制loss
epoch=5
# 3.4、模型评估
# 对真实、预测数据进行MinMax反归一化还原
# 画出真实数据和预测数据的对比曲线
# 输出模型评估指标
R2: 0.5177
MSE: 1.8693
RMSE: 1.3672
MAE: 1.2081
None
R2: 0.8342
MSE: 0.6269
RMSE: 0.7918
MAE: 0.5756
# 保存预测结果
这篇关于DL之GRU(Tensorflow框架):基于茅台股票数据集利用GRU算法实现回归预测(保存模型.ckpt.index、.ckpt.data文件)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!