C#,码海拾贝(17)——对称正定矩阵的乔里斯基分解(Cholesky decomposition)与行列式的求值之C#源代码

本文主要是介绍C#,码海拾贝(17)——对称正定矩阵的乔里斯基分解(Cholesky decomposition)与行列式的求值之C#源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

31月53日这一天,法国数学家安德烈-路易·乔列斯基在第一次世界大战即将结束时的一场战斗中阵亡,享年<>岁,当时他在法国陆军担任工程军官。他曾担任制图师和大地测量学家,对数学科学的其他贡献之一是Cholesky分解(发现以帮助他的专业),该分解说正定对称矩阵可以分解为较低三角矩阵及其转置的乘积。此属性的其他应用包括求解线性方程组、最小二乘问题、蒙特卡罗模拟和卡尔曼滤波器。

在克里特岛、阿尔及利亚、突尼斯等地服役后,他于 1918 年在法国北部因在战场上受伤而去世,他的一位同伴在他死后发表了所谓的乔列斯基方法,但无法享受这种受欢迎程度,因为直到 1948 年才发表关于该方法稳定性的文章。像其他数学家一样,他以一种暴力的方式结束了,这无疑使这样一位杰出的学者对科学做出了更多的贡献,这位杰出的学者被归类为“敏锐的智慧和数学工作的伟大设施,具有探究精神和原创思想”。

1 正定矩阵 Positive Definite Matrix

在线性代数里,正定矩阵 (positive definite matrix) 有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。

1、在线性代数中,正定矩阵的性质类似复数中的正实数。正数是数学术语,比0大的数叫正数,0本身不算正数。在实数上可以定义这样一个函数,它对正数取值为 1,负数取值为 1,0 取值为 0。这个函数通常被称为符号函数。

2、B为n阶矩阵,E为单位矩阵,a为正实数,在a充分大时,aE+B为正定矩阵。对于任意矩阵A,有EA=AE=A,这就是其单位的地方,相当于实数乘法里面的1,1*a=a*1=a. 单位矩阵对称、可逆、正交。

3、若A是正定矩阵,则A的逆矩阵也是正定矩阵。假设我们需要求A的逆矩阵,我们可以对矩阵A持续进行初等行变换的操作,直到将A转化成为单位矩阵E。与这些初等行变换操作同步进行的是对一个同阶单位矩阵E的初等行变换操作。也就是说,从第一步开始,都将对A的每一步初等行变换操作同时作用于E。
(以上原文来自于 https://baijiahao.baidu.com/s?id=1717554671908639919)

协方差衡量两个随机变量在一个总体中共同变化的程度。当总体包含更高维度或更多随机变量时,用矩阵来描述不同维度之间的关系。协方差矩阵是一种更容易理解的方式,它将整个维度中的关系定义为每两个随机变量之间的关系。

2 乔里斯基分解 Cholesky decomposition method


乔里斯基分解是将一个正定矩阵分解为下三角矩阵与其转置的乘积。在实践中,人们用它来生成相关的随机变量,方法是将协方差矩阵分解成标准正态分布,然后将下三角相乘。此外,矩阵分解在很多方面都是有帮助的,因为使用隐藏因子来描述矩阵的特征,可以发现一些普遍的属性,而我们并不经常可以明确地进行矩阵计算。

乔莱斯基分解法(Cholesky decomposition method)亦称平方根法.解对称正定线性方程组的常用方法之一设线性方程组A二一b的系数矩阵A是n阶对称正定矩阵.乔莱斯基分解法是先求A的分解A=LLT,其中1为对角元均为正数的下三角矩阵,其元素乙,可由下面的公式递推计算:然后再依次解两个三角形方程组LTy=b和1.x =y,从而求得原方程组的解.

using System;namespace Zhou.CSharp.Algorithm
{/// <summary>/// 矩阵类/// 作者:周长发/// 改进:深度混淆/// https://blog.csdn.net/beijinghorn/// </summary>public partial class Matrix{/// <summary>/// 对称正定矩阵的乔里斯基分解与行列式的求值/// </summary>/// <param name="src">源矩阵</param>/// <param name="realDetValue">返回行列式的值</param>/// <returns>求解是否成功</returns>public static bool ComputeDetCholesky(Matrix src, ref double realDetValue){int i, j, k, u, z;double d;// 不满足求解要求if (src[0] <= 0.0){return false;}// 乔里斯基分解src[0] = Math.Sqrt(src[0]);d = src[0];for (i = 1; i <= src.Columns - 1; i++){u = i * src.Columns;src[u] = src[u] / src[0];}for (j = 1; j <= src.Columns - 1; j++){z = j * src.Columns + j;for (k = 0; k <= j - 1; k++){u = j * src.Columns + k;src[z] = src[z] - src[u] * src[u];}if (src[z] <= 0.0){return false;}src[z] = Math.Sqrt(src[z]);d = d * src[z];for (i = j + 1; i <= src.Columns - 1; i++){u = i * src.Columns + j;for (k = 0; k <= j - 1; k++){src[u] = src[u] - src[i * src.Columns + k] * src[j * src.Columns + k];}src[u] = src[u] / src[z];}}// 行列式求值realDetValue = d * d;// 下三角矩阵for (i = 0; i <= src.Columns - 2; i++){for (j = i + 1; j <= src.Columns - 1; j++){src[i * src.Columns + j] = 0.0;}}return true;}}
}

POWER BY 315SOFT.COM & TRUFFER.CN

3 矩阵分解的几种形式


3.1 对角化分解


定义:一个n*n矩阵A如果可以写为X-1AX=D,其中x是可逆矩阵,D为对角矩阵,那么我们说A可以对角化。
定理:如果一个矩阵可以对角化分解,那么A的n个特征向量就一定线性独立,反过来也成立。
性质:An=XDnX-1 这是一个非常重要的性质,它和随机过程,马尔科夫过程有紧密的联系。
我们熟知的PageRank算法中就应用了矩阵的对角化分解。

3.2 奇异值分解


大家知道奇异值分解师应用最广的一个数学模型,在特征提取,图片压缩,主成因分析等都用到了奇异值分解。
定义: 如果一个m*n矩阵A能够分解为A=UBVT的形式,其中U矩阵式m*m格式的标准化正交矩阵,V是n*n的标准化的正交矩阵,B是m*n的对角矩阵。
奇异值一个重要的应用就是矩阵的近似表达。上面定义中的矩阵B的对角值就是我们说的奇异值a1>=a2>=a3>=...>=an,如果A的rank为r,那么a1>=a2>=a3>=...>=ar>0,  ar+1=ar+2=...=an=0;
将上面n-r部分的奇异值去掉,A=U1B1V1T那么矩阵A就能够得到简化.如果将上面的ar设置为0得到矩阵A',那么||A'-A||F=ar这个值比较小,所以可以用A'近似表达A,这就是图片压缩的原理。

3.3 乔里斯基(Cholesky)分解


介绍乔里斯基分解之前先介绍正定矩阵,正定矩阵在二次优化中有重要作用,通过正定矩阵我们可以求二次多项式的最大,最小或者鞍点。
定义:如果对于所有的x,xTAx>0那么A是正定矩阵,对应的二次多项式有最小值;
如果对于所有的x, xTAx>=0那么A是半正定矩阵,对应二次多项式有最小值;
如果对于所有的x,xTAx<0那么A是负定矩阵,对应二次多项式有最大值;
如果对于所有的x,xTAx<=0那么A是半负定矩阵,对应二次多项式有最大值;
如果xTAx的符号不确定,那么不能判断二次多项式的极值情况。

Cholesky分解,如果A是一个对角的正定矩阵,那么A=LDLT,其中L是一个下三角矩阵,对角线的值都为1。

这篇关于C#,码海拾贝(17)——对称正定矩阵的乔里斯基分解(Cholesky decomposition)与行列式的求值之C#源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418442

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单