卷积神经网络(ResNet-50)鸟类识别

2023-11-22 02:12

本文主要是介绍卷积神经网络(ResNet-50)鸟类识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 卷积神经网络(CNN)mnist手写数字分类识别的实现
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花的识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)海贼王人物识别
  • 卷积神经网络(VGG-19)灵笼人物识别
  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
  • 三、残差网络(ResNet)介绍
    • 1. 残差网络解决了什么
    • 2. ResNet-50介绍
  • 四、构建ResNet-50网络模型
  • 五、编译
  • 六、训练模型
  • 六、模型评估
  • 八、保存and加载模型
  • 九、预测

卷积神经网络(CNN)mnist手写数字分类识别的实现

卷积神经网络(CNN)多种图片分类的实现

卷积神经网络(CNN)衣服图像分类的实现

卷积神经网络(CNN)鲜花的识别

卷积神经网络(CNN)天气识别

卷积神经网络(VGG-16)海贼王人物识别

卷积神经网络(VGG-19)灵笼人物识别

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)

二、数据预处理

文件夹数量
Bananaquit166 张
Black Throated Bushtiti111 张
Black skimmer122 张
Cockatoo166张

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 452 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 113 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(8, 224, 224, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、残差网络(ResNet)介绍

1. 残差网络解决了什么

残差网络是为了解决神经网络隐藏层过多时,而引起的网络退化问题。退化(degradation)问题是指:当网络隐藏层变多时,网络的准确度达到饱和然后急剧退化,而且这个退化不是由于过拟合引起的。

拓展: 深度神经网络的“两朵乌云”

  • 梯度弥散/爆炸

简单来讲就是网络太深了,会导致模型训练难以收敛。这个问题可以被标准初始化和中间层正规化的方法有效控制。(现阶段知道这么一回事就好了)

  • 网络退化

随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降,这个退化不是由于过拟合引起的。

2. ResNet-50介绍

ResNet-50有两个基本的块,分别名为Conv BlockIdentity Block

在这里插入图片描述
在这里插入图片描述

四、构建ResNet-50网络模型

下面是本文的重点,可以试着按照上面三张图自己构建一下ResNet-50

from keras import layersfrom keras.layers import Input,Activation,BatchNormalization,Flatten
from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from keras.models import Modeldef identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersname_base = str(stage) + block + '_identity_block_'x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size,padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)x = layers.add([x, input_tensor] ,name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return xdef conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersres_name_base = str(stage) + block + '_conv_block_res_'name_base = str(stage) + block + '_conv_block_'x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)x = layers.add([x, shortcut], name=name_base+'add')x = Activation('relu', name=name_base+'relu4')(x)return xdef ResNet50(input_shape=[224,224,3],classes=1000):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x =     conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x =     conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x =     conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x =     conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x = Flatten()(x)x = Dense(classes, activation='softmax', name='fc1000')(x)model = Model(img_input, x, name='resnet50')# 加载预训练模型model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")return modelmodel = ResNet50()
model.summary()
Model: "resnet50"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 224, 224, 3) 0                                            
__________________________________________________________________________________________________
zero_padding2d (ZeroPadding2D)  (None, 230, 230, 3)  0           input_1[0][0]                    
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 112, 112, 64) 9472        zero_padding2d[0][0]             
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 112, 112, 64) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation (Activation)         (None, 112, 112, 64) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D)    (None, 55, 55, 64)   0           activation[0][0]                 
__________________________________________________________________________________________________
2a_conv_block_conv1 (Conv2D)    (None, 55, 55, 64)   4160        max_pooling2d[0][0]              
__________________________________________________________________________________________________
2a_conv_block_bn1 (BatchNormali (None, 55, 55, 64)   256         2a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
2a_conv_block_relu1 (Activation (None, 55, 55, 64)   0           2a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
2a_conv_block_conv2 (Conv2D)    (None, 55, 55, 64)   36928       2a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
2a_conv_block_bn2 (BatchNormali (None, 55, 55, 64)   256         2a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
2a_conv_block_relu2 (Activation (None, 55, 55, 64)   0           2a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
2a_conv_block_conv3 (Conv2D)    (None, 55, 55, 256)  16640       2a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
2a_conv_block_res_conv (Conv2D) (None, 55, 55, 256)  16640       max_pooling2d[0][0]              
__________________________________________________________________________________________________
2a_conv_block_bn3 (BatchNormali (None, 55, 55, 256)  1024        2a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
2a_conv_block_res_bn (BatchNorm (None, 55, 55, 256)  1024        2a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
2a_conv_block_add (Add)         (None, 55, 55, 256)  0           2a_conv_block_bn3[0][0]          2a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
2a_conv_block_relu4 (Activation (None, 55, 55, 256)  0           2a_conv_block_add[0][0]          
__________________________________________________________________________________________________
2b_identity_block_conv1 (Conv2D (None, 55, 55, 64)   16448       2a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
2b_identity_block_bn1 (BatchNor (None, 55, 55, 64)   256         2b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
2b_identity_block_relu1 (Activa (None, 55, 55, 64)   0           2b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
2b_identity_block_conv2 (Conv2D (None, 55, 55, 64)   36928       2b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
2b_identity_block_bn2 (BatchNor (None, 55, 55, 64)   256         2b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
2b_identity_block_relu2 (Activa (None, 55, 55, 64)   0           2b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
2b_identity_block_conv3 (Conv2D (None, 55, 55, 256)  16640       2b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
2b_identity_block_bn3 (BatchNor (None, 55, 55, 256)  1024        2b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
2b_identity_block_add (Add)     (None, 55, 55, 256)  0           2b_identity_block_bn3[0][0]      2a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
2b_identity_block_relu4 (Activa (None, 55, 55, 256)  0           2b_identity_block_add[0][0]      
__________________________________________________________________________________________________
2c_identity_block_conv1 (Conv2D (None, 55, 55, 64)   16448       2b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
2c_identity_block_bn1 (BatchNor (None, 55, 55, 64)   256         2c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
2c_identity_block_relu1 (Activa (None, 55, 55, 64)   0           2c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
2c_identity_block_conv2 (Conv2D (None, 55, 55, 64)   36928       2c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
2c_identity_block_bn2 (BatchNor (None, 55, 55, 64)   256         2c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
2c_identity_block_relu2 (Activa (None, 55, 55, 64)   0           2c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
2c_identity_block_conv3 (Conv2D (None, 55, 55, 256)  16640       2c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
2c_identity_block_bn3 (BatchNor (None, 55, 55, 256)  1024        2c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
2c_identity_block_add (Add)     (None, 55, 55, 256)  0           2c_identity_block_bn3[0][0]      2b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
2c_identity_block_relu4 (Activa (None, 55, 55, 256)  0           2c_identity_block_add[0][0]      
__________________________________________________________________________________________________
3a_conv_block_conv1 (Conv2D)    (None, 28, 28, 128)  32896       2c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3a_conv_block_bn1 (BatchNormali (None, 28, 28, 128)  512         3a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
3a_conv_block_relu1 (Activation (None, 28, 28, 128)  0           3a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
3a_conv_block_conv2 (Conv2D)    (None, 28, 28, 128)  147584      3a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
3a_conv_block_bn2 (BatchNormali (None, 28, 28, 128)  512         3a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
3a_conv_block_relu2 (Activation (None, 28, 28, 128)  0           3a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
3a_conv_block_conv3 (Conv2D)    (None, 28, 28, 512)  66048       3a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
3a_conv_block_res_conv (Conv2D) (None, 28, 28, 512)  131584      2c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3a_conv_block_bn3 (BatchNormali (None, 28, 28, 512)  2048        3a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
3a_conv_block_res_bn (BatchNorm (None, 28, 28, 512)  2048        3a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
3a_conv_block_add (Add)         (None, 28, 28, 512)  0           3a_conv_block_bn3[0][0]          3a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
3a_conv_block_relu4 (Activation (None, 28, 28, 512)  0           3a_conv_block_add[0][0]          
__________________________________________________________________________________________________
3b_identity_block_conv1 (Conv2D (None, 28, 28, 128)  65664       3a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
3b_identity_block_bn1 (BatchNor (None, 28, 28, 128)  512         3b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
3b_identity_block_relu1 (Activa (None, 28, 28, 128)  0           3b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
3b_identity_block_conv2 (Conv2D (None, 28, 28, 128)  147584      3b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
3b_identity_block_bn2 (BatchNor (None, 28, 28, 128)  512         3b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
3b_identity_block_relu2 (Activa (None, 28, 28, 128)  0           3b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
3b_identity_block_conv3 (Conv2D (None, 28, 28, 512)  66048       3b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
3b_identity_block_bn3 (BatchNor (None, 28, 28, 512)  2048        3b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
3b_identity_block_add (Add)     (None, 28, 28, 512)  0           3b_identity_block_bn3[0][0]      3a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
3b_identity_block_relu4 (Activa (None, 28, 28, 512)  0           3b_identity_block_add[0][0]      
__________________________________________________________________________________________________
3c_identity_block_conv1 (Conv2D (None, 28, 28, 128)  65664       3b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3c_identity_block_bn1 (BatchNor (None, 28, 28, 128)  512         3c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
3c_identity_block_relu1 (Activa (None, 28, 28, 128)  0           3c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
3c_identity_block_conv2 (Conv2D (None, 28, 28, 128)  147584      3c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
3c_identity_block_bn2 (BatchNor (None, 28, 28, 128)  512         3c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
3c_identity_block_relu2 (Activa (None, 28, 28, 128)  0           3c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
3c_identity_block_conv3 (Conv2D (None, 28, 28, 512)  66048       3c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
3c_identity_block_bn3 (BatchNor (None, 28, 28, 512)  2048        3c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
3c_identity_block_add (Add)     (None, 28, 28, 512)  0           3c_identity_block_bn3[0][0]      3b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3c_identity_block_relu4 (Activa (None, 28, 28, 512)  0           3c_identity_block_add[0][0]      
__________________________________________________________________________________________________
3d_identity_block_conv1 (Conv2D (None, 28, 28, 128)  65664       3c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3d_identity_block_bn1 (BatchNor (None, 28, 28, 128)  512         3d_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
3d_identity_block_relu1 (Activa (None, 28, 28, 128)  0           3d_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
3d_identity_block_conv2 (Conv2D (None, 28, 28, 128)  147584      3d_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
3d_identity_block_bn2 (BatchNor (None, 28, 28, 128)  512         3d_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
3d_identity_block_relu2 (Activa (None, 28, 28, 128)  0           3d_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
3d_identity_block_conv3 (Conv2D (None, 28, 28, 512)  66048       3d_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
3d_identity_block_bn3 (BatchNor (None, 28, 28, 512)  2048        3d_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
3d_identity_block_add (Add)     (None, 28, 28, 512)  0           3d_identity_block_bn3[0][0]      3c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
3d_identity_block_relu4 (Activa (None, 28, 28, 512)  0           3d_identity_block_add[0][0]      
__________________________________________________________________________________________________
4a_conv_block_conv1 (Conv2D)    (None, 14, 14, 256)  131328      3d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4a_conv_block_bn1 (BatchNormali (None, 14, 14, 256)  1024        4a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
4a_conv_block_relu1 (Activation (None, 14, 14, 256)  0           4a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
4a_conv_block_conv2 (Conv2D)    (None, 14, 14, 256)  590080      4a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
4a_conv_block_bn2 (BatchNormali (None, 14, 14, 256)  1024        4a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
4a_conv_block_relu2 (Activation (None, 14, 14, 256)  0           4a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
4a_conv_block_conv3 (Conv2D)    (None, 14, 14, 1024) 263168      4a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
4a_conv_block_res_conv (Conv2D) (None, 14, 14, 1024) 525312      3d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4a_conv_block_bn3 (BatchNormali (None, 14, 14, 1024) 4096        4a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
4a_conv_block_res_bn (BatchNorm (None, 14, 14, 1024) 4096        4a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
4a_conv_block_add (Add)         (None, 14, 14, 1024) 0           4a_conv_block_bn3[0][0]          4a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
4a_conv_block_relu4 (Activation (None, 14, 14, 1024) 0           4a_conv_block_add[0][0]          
__________________________________________________________________________________________________
4b_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
4b_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4b_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4b_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4b_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4b_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4b_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4b_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4b_identity_block_add (Add)     (None, 14, 14, 1024) 0           4b_identity_block_bn3[0][0]      4a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
4b_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4b_identity_block_add[0][0]      
__________________________________________________________________________________________________
4c_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4c_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4c_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4c_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4c_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4c_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4c_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4c_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4c_identity_block_add (Add)     (None, 14, 14, 1024) 0           4c_identity_block_bn3[0][0]      4b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4c_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4c_identity_block_add[0][0]      
__________________________________________________________________________________________________
4d_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4d_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4d_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4d_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4d_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4d_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4d_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4d_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4d_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4d_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4d_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4d_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4d_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4d_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4d_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4d_identity_block_add (Add)     (None, 14, 14, 1024) 0           4d_identity_block_bn3[0][0]      4c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4d_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4d_identity_block_add[0][0]      
__________________________________________________________________________________________________
4e_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4e_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4e_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4e_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4e_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4e_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4e_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4e_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4e_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4e_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4e_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4e_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4e_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4e_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4e_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4e_identity_block_add (Add)     (None, 14, 14, 1024) 0           4e_identity_block_bn3[0][0]      4d_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4e_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4e_identity_block_add[0][0]      
__________________________________________________________________________________________________
4f_identity_block_conv1 (Conv2D (None, 14, 14, 256)  262400      4e_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4f_identity_block_bn1 (BatchNor (None, 14, 14, 256)  1024        4f_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
4f_identity_block_relu1 (Activa (None, 14, 14, 256)  0           4f_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
4f_identity_block_conv2 (Conv2D (None, 14, 14, 256)  590080      4f_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
4f_identity_block_bn2 (BatchNor (None, 14, 14, 256)  1024        4f_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
4f_identity_block_relu2 (Activa (None, 14, 14, 256)  0           4f_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
4f_identity_block_conv3 (Conv2D (None, 14, 14, 1024) 263168      4f_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
4f_identity_block_bn3 (BatchNor (None, 14, 14, 1024) 4096        4f_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
4f_identity_block_add (Add)     (None, 14, 14, 1024) 0           4f_identity_block_bn3[0][0]      4e_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
4f_identity_block_relu4 (Activa (None, 14, 14, 1024) 0           4f_identity_block_add[0][0]      
__________________________________________________________________________________________________
5a_conv_block_conv1 (Conv2D)    (None, 7, 7, 512)    524800      4f_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5a_conv_block_bn1 (BatchNormali (None, 7, 7, 512)    2048        5a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
5a_conv_block_relu1 (Activation (None, 7, 7, 512)    0           5a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
5a_conv_block_conv2 (Conv2D)    (None, 7, 7, 512)    2359808     5a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
5a_conv_block_bn2 (BatchNormali (None, 7, 7, 512)    2048        5a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
5a_conv_block_relu2 (Activation (None, 7, 7, 512)    0           5a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
5a_conv_block_conv3 (Conv2D)    (None, 7, 7, 2048)   1050624     5a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
5a_conv_block_res_conv (Conv2D) (None, 7, 7, 2048)   2099200     4f_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5a_conv_block_bn3 (BatchNormali (None, 7, 7, 2048)   8192        5a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
5a_conv_block_res_bn (BatchNorm (None, 7, 7, 2048)   8192        5a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
5a_conv_block_add (Add)         (None, 7, 7, 2048)   0           5a_conv_block_bn3[0][0]          5a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
5a_conv_block_relu4 (Activation (None, 7, 7, 2048)   0           5a_conv_block_add[0][0]          
__________________________________________________________________________________________________
5b_identity_block_conv1 (Conv2D (None, 7, 7, 512)    1049088     5a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
5b_identity_block_bn1 (BatchNor (None, 7, 7, 512)    2048        5b_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
5b_identity_block_relu1 (Activa (None, 7, 7, 512)    0           5b_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
5b_identity_block_conv2 (Conv2D (None, 7, 7, 512)    2359808     5b_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
5b_identity_block_bn2 (BatchNor (None, 7, 7, 512)    2048        5b_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
5b_identity_block_relu2 (Activa (None, 7, 7, 512)    0           5b_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
5b_identity_block_conv3 (Conv2D (None, 7, 7, 2048)   1050624     5b_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
5b_identity_block_bn3 (BatchNor (None, 7, 7, 2048)   8192        5b_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
5b_identity_block_add (Add)     (None, 7, 7, 2048)   0           5b_identity_block_bn3[0][0]      5a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
5b_identity_block_relu4 (Activa (None, 7, 7, 2048)   0           5b_identity_block_add[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv1 (Conv2D (None, 7, 7, 512)    1049088     5b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn1 (BatchNor (None, 7, 7, 512)    2048        5c_identity_block_conv1[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu1 (Activa (None, 7, 7, 512)    0           5c_identity_block_bn1[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv2 (Conv2D (None, 7, 7, 512)    2359808     5c_identity_block_relu1[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn2 (BatchNor (None, 7, 7, 512)    2048        5c_identity_block_conv2[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu2 (Activa (None, 7, 7, 512)    0           5c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv3 (Conv2D (None, 7, 7, 2048)   1050624     5c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn3 (BatchNor (None, 7, 7, 2048)   8192        5c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
5c_identity_block_add (Add)     (None, 7, 7, 2048)   0           5c_identity_block_bn3[0][0]      5b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu4 (Activa (None, 7, 7, 2048)   0           5c_identity_block_add[0][0]      
__________________________________________________________________________________________________
avg_pool (AveragePooling2D)     (None, 1, 1, 2048)   0           5c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
flatten (Flatten)               (None, 2048)         0           avg_pool[0][0]                   
__________________________________________________________________________________________________
fc1000 (Dense)                  (None, 1000)         2049000     flatten[0][0]                    
==================================================================================================
Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120
__________________________________________________________________________________________________

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

# 设置优化器,我这里改变了学习率。
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

六、训练模型

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
57/57 [==============================] - 12s 87ms/step - loss: 2.4394 - accuracy: 0.6620 - val_loss: 484.4415 - val_accuracy: 0.1858
Epoch 2/10
57/57 [==============================] - 3s 55ms/step - loss: 0.3268 - accuracy: 0.8904 - val_loss: 5.5874 - val_accuracy: 0.4513
Epoch 3/10
57/57 [==============================] - 3s 52ms/step - loss: 0.1593 - accuracy: 0.9558 - val_loss: 2.0023 - val_accuracy: 0.6726
Epoch 4/10
57/57 [==============================] - 3s 52ms/step - loss: 0.0546 - accuracy: 0.9869 - val_loss: 1.4410 - val_accuracy: 0.7788
Epoch 5/10
57/57 [==============================] - 3s 51ms/step - loss: 0.1656 - accuracy: 0.9567 - val_loss: 2.1653 - val_accuracy: 0.5487
Epoch 6/10
57/57 [==============================] - 3s 51ms/step - loss: 0.2403 - accuracy: 0.9221 - val_loss: 1.0641 - val_accuracy: 0.7257
Epoch 7/10
57/57 [==============================] - 3s 52ms/step - loss: 0.1774 - accuracy: 0.9377 - val_loss: 0.4922 - val_accuracy: 0.8673
Epoch 8/10
57/57 [==============================] - 3s 51ms/step - loss: 0.0733 - accuracy: 0.9760 - val_loss: 0.2036 - val_accuracy: 0.9381
Epoch 9/10
57/57 [==============================] - 3s 51ms/step - loss: 0.0185 - accuracy: 0.9992 - val_loss: 0.1091 - val_accuracy: 0.9735
Epoch 10/10
57/57 [==============================] - 3s 51ms/step - loss: 0.0086 - accuracy: 1.0000 - val_loss: 0.1246 - val_accuracy: 0.9735

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

八、保存and加载模型

# 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = keras.models.load_model('model/my_model.h5')

九、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = new_model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

这篇关于卷积神经网络(ResNet-50)鸟类识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406744

相关文章

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【附答案】C/C++ 最常见50道面试题

文章目录 面试题 1:深入探讨变量的声明与定义的区别面试题 2:编写比较“零值”的`if`语句面试题 3:深入理解`sizeof`与`strlen`的差异面试题 4:解析C与C++中`static`关键字的不同用途面试题 5:比较C语言的`malloc`与C++的`new`面试题 6:实现一个“标准”的`MIN`宏面试题 7:指针是否可以是`volatile`面试题 8:探讨`a`和`&a`

day-50 求出最长好子序列 I

思路 二维dp,dp[i][h]表示nums[i] 结尾,且有不超过 h 个下标满足条件的最长好子序列的长度(0<=h<=k),二维数组dp初始值全为1 解题过程 状态转换方程: 1.nums[i]==nums[j],dp[i,h]=Math.max(dp[i,h],dp[j,h]+1) 2.nums[i]!=nums[j],dp[i,h]=Math.max(dp[i,h],dp[j,h-1

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

图神经网络(2)预备知识

1. 图的基本概念         对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E),  其 中V={V1,V2,…,Vn}  是一个具有 n 个顶点的集合。 1.1邻接矩阵         我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj)  组成了

BERN2(生物医学领域)命名实体识别与命名规范化工具

BERN2: an advanced neural biomedical named entity recognition and normalization tool 《Bioinformatics》2022 1 摘要 NER和NEN:在生物医学自然语言处理中,NER和NEN是关键任务,它们使得从生物医学文献中自动提取实体(如疾病和药物)成为可能。 BERN2:BERN2是一个工具,