大叔学ML第四:线性回归正则化

2023-11-10 00:10

本文主要是介绍大叔学ML第四:线性回归正则化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 基本形式
  • 梯度下降法中应用正则化项
  • 正规方程中应用正则化项
  • 小试牛刀
  • 调用类库
  • 扩展

正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则;正规;常规;正宗等。出自《楚辞·离骚》、《插图本中国文学史》、《东京赋》等文献。 —— 百度百科

基本形式

线性回归模型常常会出现过拟合的情况,由于训练集噪音的干扰,训练出来的模型抖动很大,不够平滑,导致泛化能力差,如下所示:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeaturesdef poly4(X, *theta):return theta[0] + theta[1] * X + theta[2] * X**2 + theta[3] * X**3 + theta[4] * X**4''' 创建样本数据 '''
X = np.arange(0, 9, 1)
Y = [-10, 1, 10, 19, 10, 10, 46, 49, 50]''' 用4次多项式拟合 '''
pf = PolynomialFeatures(degree=4)
featrues_matrix = pf.fit_transform(X.reshape(9, 1))theta = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix)), featrues_matrix.T), np.array(Y).T))
Ycalculated = poly4(X, *theta)plt.scatter(X, Y, marker='x', color='k')
plt.plot(X, Ycalculated, color='r')
plt.show()

运行结果:
image.png-12.7kB

上面的代码中,大叔试图用多项式\(\theta_0 + \theta_1x + \theta_2x^2 + \theta_3x^3 + \theta_4x^4\)拟合给出的9个样本(如对以上代码有疑问,可参见大叔学ML第三:多项式回归),用正规方程计算出\(\vec\theta\),并绘图发现:模型产生了过拟合的情况。解决线性回归过拟合的一个方案是给代价函数添加正则化项。代价函数(参见大叔学ML第二:线性回归)形如:
\[j(\theta_0,\theta_1\dots \theta_n)=\frac{1}{2m}\sum_{k=1}^m (\theta_0x_0^{(k)} + \theta_1 x_1^{(k)} + \theta_2 x_2^{(k)} + \dots + \theta_n x_n^{(k)} - y^{(k)})^2 \tag{1}\]
添加正则化后的代价函数形如:
\[j(\theta_0,\theta_1\dots \theta_n)=\frac{1}{2m}\left[\sum_{k=1}^m (\theta_0x_0^{(k)} + \theta_1 x_1^{(k)} + \theta_2 x_2^{(k)} + \dots + \theta_n x_n^{(k)} - y^{(k)})^2 +\lambda\sum_{i=0}^n \theta_i^2 \tag{2}\right]\],其中\(\lambda > 0\)。直观地理解:当我们不加正则化项时,上面的代码拟合出来的多项式某些项前面的系数\(\theta\)的绝对值可能很大,这将导致横轴数据的微小变化会对应纵轴数据的大幅度变化,使得图像抖动加剧,而加了正则化项后起到一个“惩罚”的作用:当\(\lambda\)较大时,\(\lambda\sum_{i=1}^n \theta_i^2\)会很大,使得代价函数变大,为了使代价函数尽可能地小,\(\theta\)只能取尽可能接近0的数,这样最终模型的抖动就变小了。

梯度下降法中应用正则化项

对(2)式中的\(\vec\theta\)求偏导:

  • \(\frac{\partial}{\partial\theta_0}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\left[\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)} - y^{(k)})x_0^{(k)} + \lambda\theta_0\right]\)
  • \(\frac{\partial}{\partial\theta_1}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\left[\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_1^{(k)} + \lambda\theta_1\right]\)
  • \(\dots\)
  • \(\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\left[\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)} + \lambda\theta_n\right]\)

有了偏导公式后修改原来的代码(参见大叔学ML第二:线性回归)即可,不再赘述。

正规方程中应用正则化项

用向量的形式表示代价函数如下:
\[J(\vec\theta)=\frac{1}{2m}||X\vec\theta - \vec{y}||^2 \tag{3}\]
观察(2)式,添加了正则化项的向量表示形式如下:
\[J(\vec\theta)=\frac{1}{2m}\left[||X\vec\theta - \vec{y}||^2 + \lambda||\vec\theta||^2\right] \tag{4}\]
变形:
\[\begin{align} J(\vec\theta)&=\frac{1}{2m}\left[||X\vec\theta - \vec{y}||^2 + ||\vec\theta||^2\right] \\ &=\frac{1}{2m}\left[(X\vec\theta - \vec{y})^T(X\vec\theta - \vec{y}) + \lambda\vec\theta^T\vec\theta \right]\\ &=\frac{1}{2m}\left[(\vec\theta^TX^T - \vec{y}^T)(X\vec\theta - \vec{y}) + \lambda\vec\theta^T\vec\theta\right] \\ &=\frac{1}{2m}\left[(\vec\theta^TX^TX\vec\theta - \vec\theta^TX^T\vec{y}- \vec{y}^TX\vec\theta + \vec{y}^T\vec{y}) + \lambda\vec\theta^T\vec\theta\right]\\ &=\frac{1}{2m}(\vec\theta^TX^TX\vec\theta - 2\vec{y}^TX\vec\theta + \vec{y}^T\vec{y} + \lambda\vec\theta^T\vec\theta)\\ \end{align}\]
\(\vec\theta\)求导:
\[\begin{align} \frac{d}{d\vec\theta}J(\vec\theta)&=\frac{1}{m}(X^TX\vec\theta-X^T\vec{y} + \lambda I\vec\theta) \\ \frac{d}{d\vec\theta}J(\vec\theta)&=\frac{1}{m}\left[(X^TX + \lambda I)\vec\theta-X^T\vec{y}\right] \end{align}\]
令其等于0,得:\[\vec\theta=(X^TX + \lambda I)^{-1}X^T\vec{y}\tag{5}\]

小试牛刀

对本文开头所给出的代码进行修改,加入正则化项看看效果:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeaturesdef poly4(X, *theta):return theta[0] + theta[1] * X + theta[2] * X**2 + theta[3] * X**3 + theta[4] * X**4''' 创建样本数据 '''
X = np.arange(0, 9, 1)
Y = [-10, 1, 10, 19, 10, 10, 46, 49, 50]''' 用4次多项式拟合 '''
pf = PolynomialFeatures(degree=4)
featrues_matrix = pf.fit_transform(X.reshape(9, 1))ReM = np.eye(5) #正则化矩阵
ReM[0, 0] = 0theta1 = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix) + 0 * ReM), featrues_matrix.T), np.array(Y).T))
Y1 = poly4(X, *theta1)theta2 = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix) + 1 * ReM), featrues_matrix.T), np.array(Y).T))
Y2 = poly4(X, *theta2)theta3 = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix) + 10000 * ReM), featrues_matrix.T), np.array(Y).T))
Y3 = poly4(X, *theta3)plt.scatter(X, Y, marker='x', color='k')
plt.plot(X, Y1, color='r')
plt.plot(X, Y2, color='y')
plt.plot(X, Y3, color='b')plt.show()

运行结果:

image.png-20.6kB

上图中,红线是没有加正则化项拟合出来的多项式曲线,黄线是加了\(\lambda\)取1的正则化项后拟合出来的曲线,蓝线是加了\(\lambda\)取10000的正则化项拟合出来的曲线。可见,加了正则化项后,模型的抖动变小了,曲线变得更加平滑。

调用类库

sklean中已经为我们写好了加正则化项的线性回归方法,修改上面的代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeaturesdef poly4(X, *theta):return theta[0] + theta[1] * X + theta[2] * X**2 + theta[3] * X**3 + theta[4] * X**4''' 创建样本数据 '''
X = np.arange(0, 9, 1)
Y = [-10, 1, 10, 19, 10, 10, 46, 49, 50]''' 用4次多项式拟合 '''
pf = PolynomialFeatures(degree=4)
featrues_matrix = pf.fit_transform(X.reshape(9, 1))ridge_reg = Ridge(alpha=100)
ridge_reg.fit(featrues_matrix, np.array(Y).reshape((9, 1)))
theta = tuple(ridge_reg.intercept_.tolist() + ridge_reg.coef_[0].tolist())Y1 = poly4(X, *theta)plt.scatter(X, Y, marker='x', color='k')
plt.plot(X, Y1, color='r')plt.show()

运行结果:

image.png-13.9kB

哇,调库和自己写代码搞出的模型差距居然这么大。看来水很深啊,大叔低估了ML的难度,路漫漫其修远兮......将来如果有机会需要阅读一下这些库的源码。大叔猜测是和样本数量可能有关系,大叔的样本太少,自己瞎上的。园子里高人敬请在评论区指教哦。

扩展

正则化项不仅如本文一种添加方式,本文所用的加\(\lambda||\vec\theta||^2\)的方式被称为“岭回归”,据说是因为给矩阵\(X^TX\)加了一个对角矩阵,此对角矩阵的主元看起来就像一道分水岭,所以叫“岭回归”。代码中用的sklean中的模块名字就是Ridge,也是分水岭的意思。

除了岭回归,还有“Lasso回归”,这个回归算法所用的正则化项是\(\lambda||\vec\theta||\),岭回归的特点是缩小样本属性对应的各项\(\theta\),而Lasso回归的特点是使某些不打紧的属性对应的\(\theta\)为0,即:忽略掉了某些属性。还有一种回归方式叫做“弹性网络”,是一种对岭回归和Lasso回归的综合应用。大叔在以后的日子研究好了还会专门再写一篇博文记录。

通过这几天的研究,大叔发现其实ML中最重要的部分就是线性回归,连高大上的深度学习也是对线性回归的扩展,如果对线性回归有了透彻的了解,定能在ML的路上事半功倍,一往无前。祝大家圣诞快乐!

转载于:https://www.cnblogs.com/zzy0471/p/regularization.html

这篇关于大叔学ML第四:线性回归正则化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379276

相关文章

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

项目实战系列三: 家居购项目 第四部分

购物车 🌳购物车🍆显示购物车🍆更改商品数量🍆清空购物车&&删除商品 🌳生成订单 🌳购物车 需求分析 1.会员登陆后, 可以添加家居到购物车 2.完成购物车的设计和实现 3.每添加一个家居,购物车的数量+1, 并显示 程序框架图 1.新建src/com/zzw/furns/entity/CartItem.java, CartItem-家居项模型 /***

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

带头结点的线性链表的基本操作

持续了好久,终于有了这篇博客,链表的操作需要借助图像模型进行反复学习,这里尽可能的整理并记录下自己的思考,以备后面复习,和大家分享。需要说明的是,我们从实际应用角度出发重新定义了线性表。 一. 定义 从上一篇文章可以看到,由于链表在空间的合理利用上和插入、删除时不需要移动等优点,因此在很多场合下,它是线性表的首选存储结构。然而,它也存在某些实现的缺点,如求线性表的长度时不如顺序存储结构的

C语言深度剖析--不定期更新的第四弹

哈哈哈哈哈哈,今天一天两更! void关键字 void关键字不能用来定义变量,原因是void本身就被编译器解释为空类型,编译器强制地不允许定义变量 定义变量的本质是:开辟空间 而void 作为空类型,理论上不应该开辟空间(针对编译器而言),即使开辟了空间,也只是作为一个占位符看待(针对Linux来说) 所以,既然无法开辟空间,也无法作为正常变量使用,既然无法使用,干脆编译器不让它编译变

浙大数据结构:02-线性结构4 Pop Sequence

这道题我们采用数组来模拟堆栈和队列。 简单说一下大致思路,我们用栈来存1234.....,队列来存输入的一组数据,栈与队列进行匹配,相同就pop 机翻 1、条件准备 stk是栈,que是队列。 tt指向的是栈中下标,front指向队头,rear指向队尾。 初始化栈顶为0,队头为0,队尾为-1 #include<iostream>using namespace std;#defi

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性

C#中的各种画刷, PathGradientBrush、线性渐变(LinearGradientBrush)和径向渐变的区别

在C#中,画刷(Brush)是用来填充图形(如形状或文本)内部区域的对象。在.NET框架中,画刷是System.Drawing命名空间的一部分,通常用于GDI+绘图操作。以下是一些常用的画刷类型: SolidBrush:用于创建单色填充的画刷。HatchBrush:用于创建具有图案填充的画刷。TextureBrush:用于创建具有图像纹理填充的画刷。LinearGradientBrush:用于创