C语言深度剖析--不定期更新的第四弹

2024-09-08 02:12

本文主要是介绍C语言深度剖析--不定期更新的第四弹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
哈哈哈哈哈哈,今天一天两更!

void关键字

void关键字不能用来定义变量,原因是void本身就被编译器解释为空类型,编译器强制地不允许定义变量
在这里插入图片描述
定义变量的本质是:开辟空间

而void 作为空类型,理论上不应该开辟空间(针对编译器而言),即使开辟了空间,也只是作为一个占位符看待(针对Linux来说)

所以,既然无法开辟空间,也无法作为正常变量使用,既然无法使用,干脆编译器不让它编译变量

void修饰函数返回值和参数

需要注意的点是:C语言中函数可以不带返回值,默认的返回值是int

但是我们平常在编写函数相关的代码的时候还是得带上函数的返回值类型,否则人家会在猜测究竟是默认?还是忘了没有写返回值?

所以在前面用void函数修饰的作用是起到一个提醒和占位的作用

void修饰函数返回值:1.占位符,让用户明确不需要返回值2.告知编译器,这个返回值无法被接受

void充当函数的形参列表:告知用户或编译器,该函数不需要传参

结论:如果一个函数没有参数,将参数列表设置为void,是一个不错的习惯,因为可以将错误提前发现

void指针

void指针可以创建变量,原因在于void*是指针,是指针,空间大小就能明确出来

void*可以被任何类型的指针接受,void * 可以接受任意类型指针(常用)

进一步来说就是库,系统接口的设计上,尽量设计成通用接口

如这样的:
在这里插入图片描述
例子如下:

#include <stdio.h>
int main()
{void*p=NULL;int*x=NULL;double*y=NULL;p=x;//虽然类型不同,但是编译器不会报错p=y;//同上x=p;y=p;//编译器也不会报错return 0;
}

这里产生了一个问题:void类型的指针是否可以计算呢?

在不同的平台上是不一样的,在VS的环境下,是不可以的,但是在Linux的环境下是可以的,主要原因出现在两个平台对于void大小的理解,VS认为void大小为0,但是Linux认为是sizeof(void)

void*指针不可以解引用,虽然void *可以接受任意类型,但是还是不可以解引用

return关键字

两个问题的区别:C语言有没有字符串类型VS C语言有没有字符串

C语言有字符串,但是C语言没有字符串类型

注意点:求字符串长度是不包括‘\0’的,求字符串容量是包括’\0’

计算机中是否真的需要将所有的数据清零?

计算机中清空数据,只需要设置该数据无效即可。

这句话的意思其实不太准确,只是因为我们所学的知识还没有这么多而已,打个比方,一个10GB的文件,可能只需要十个比特位大小,一个比特位代表1GB

接下来看如何正确理解下面的代码:

#include <stdio.h>
char*show()
{char str[]="hello cosmic love";return str;
}
int main()
{char*s=show();printf("%s\n",s);return 0;
}

在这里插入图片描述
打印结果是一串乱码

这里我们需要懂得函数栈帧相关的知识。

调用函数,形成栈帧;函数返回,释放栈帧

在这里插入图片描述
在这里插入图片描述
但是在调试的时候,s指向的值还在

从12行调试到13行的时候发生了变化
在这里插入图片描述
原因有下面几点:

1.计算机并不清空数据

2.printf也是函数,也要遵守这些规则,所以就二次覆盖了show的栈区

补充2个点:

1.怎样保证栈帧申请的空间是够的?

因为编译器会根据关键字大小预估充足的空间大小

2.栈帧的结构是怎样的?

可以联想我们之前学过的递归的概念,栈帧的创建也是一个不断向下创建的过程

有个问题:临时变量为什么具有临时性?

因为临时变量在函数栈帧中创建,栈帧结构在函数调用完毕之后要被释放

书写规范上的注意:

return语句不可返回指向“栈内存”的指针,因为该内存在函数体结束的时候会被销毁

可以看下面几行代码:

int GetData()
{int x=0x11223344;printf("run get data!\n");return x;
}
int main()
{int y=GetData();printf("ret:%x\n",y);
}

来看运行结果:

在这里插入图片描述
貌似跟前面有点悖论

这里拿到的不是X,拿到的是里面的内容

看一下里面的反汇编代码:
得到了下面的结论:

在这里插入图片描述
在上面的代码做一点小小的修改:

int GetData()
{int x=0x11223344;printf("run get data!\n");return x;
}
int main()
{GetData();printf("ret:%x\n",y);
}

在这里插入图片描述
需要注意一个概念:函数的返回值具有常性

结论

一个函数如何返回给外部调用方,本质是通过寄存器;

当我们返回,没有对应的接收时,调用return 会生成同等汇编语言,如果对应的接收方,就会继续往下走

这篇关于C语言深度剖析--不定期更新的第四弹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146816

相关文章

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

GIS图形库更新2024.8.4-9.9

更多精彩内容请访问 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信:digital_twin123 Cesium 本期发布了1.121 版本。重大新闻,Cesium被Bentley收购。 ✨ 功能和改进 默认启用 MSAA,采样 4 次。若要关闭 MSAA,则可以设置scene.msaaSamples = 1。但是通过比较,发现并没有多大改善。

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象