欧几里得证明$\sqrt{2}$是无理数

2023-11-09 14:30

本文主要是介绍欧几里得证明$\sqrt{2}$是无理数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选自《费马大定理:一个困惑了世间智者358年的谜》,有少许改动。
原译者:薛密

s24562968.jpg

\(\sqrt{2}\)是无理数,即不能写成一个分数。欧几里得以反证法证明此结论。第一步是假定相反的事实是真的,即\(\sqrt{2}\)可以写成某个未知的分数。用\(\frac{p}{q}\) 来代表这个假设的分数,其中 \(p\)\(q\) 是两个整数。

在开始证明本身之前,需要对分数和偶数的某些性质有个基本的了解。

(1) 如果任取一个整数并且用2去乘它,那么得到的新数一定是偶数。这基本上就是偶数的定义。

(2) 如果已知一个整数的平方是偶数,那么这个整数本身一定是偶数。

(3) 最后,分数可以简化。例如分数\(\frac{16}{24}\),用2除分子分母得\(\frac{8}{12}\),两个分数\(\frac{16}{24}\)\(\frac{8}{12}\)是相等的,进一步,\(\frac{8}{12}\)\(\frac{4}{6}\) 是相等的,而\(\frac{4}{6}\) 又与\(\frac{2}{3}\)是相等的。然而,\(\frac{2}{3}\)不能再化简,因为2 和3没有公因数。不可能将一个分数永远不断地简化。

欧几里得相信\(\sqrt{2}\)不可能写成一个分数。然而,由于他采用反证法,所以他先假定

\begin{equation*} \sqrt{2}=\frac{p}{q} \end{equation*}

将两边平方,得

\begin{equation*} 2=\frac{p^2}{q^2} \end{equation*}

\begin{equation*} 2q^2=p^2 \end{equation*}

现在根据第(1) 点我们知道\(p^2\) 必定是偶数。此外,根据第(2) 点我们知道 \(p\) 本身也必须是偶数。但是,如果 \(p\) 是偶数,那么它可以写成\(2m\),其中\(m\) 是某个别的整数。这是从第(1) 点可以得出的结论。将这再代回到等式中,我们得到

\begin{equation*} 2q^2=p^2=(2m)^2=4m^2 \end{equation*}

两边除以2,得

\begin{equation*} q^2=2m^2 \end{equation*}

但是根据我们前面用过的同样的论证,我们知道 \(q^2\) 必须是偶数,因而 \(q\) 本身必须是偶数。如果确实是这样,那么 \(q\) 可以写成\(2n\),其中 \(n\) 是某个别的整数。如果我们回到开始的地方,那么

\begin{equation*} \sqrt{2}=\frac{p}{q}=\frac{2m}{2n}=\frac{m}{n} \end{equation*}

现在我们得到一个新的分数\(\frac{m}{n}\),它比\(\frac{p}{q}\)更简单。

然而,我们发现对\(\frac{m}{n}\)我们可以精确地重复以上同一个过程,在结束时我们将产生一个更简单的分数,比方说\(\frac{g}{h}\)。然后又可以对这个分数再重复相同的过程,而新的更为简单的分数,比方说\(\frac{e}{f}\)将是。我们可以对它再作同样的处理,并且一次次地重复这个过程,不会结束。但是根据第(3) 点我们知道任何分数不可能永远简化下去,总是必须有一个最简单的分数存在,而我们最初假定的分数\(\frac{p}{q}\) 似乎不服从这条法则。于是,我们可以有正当的理由说我们得出了矛盾。如果\(\sqrt{2}\)可以写成为一个分数,其结果将是不合理的,所以,说\(\sqrt{2}\)不可能写成一个分数是对的。于是,\(\sqrt{2}\)是一个无理数。

转载于:https://www.cnblogs.com/joyfulphysics/p/5158867.html

这篇关于欧几里得证明$\sqrt{2}$是无理数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376671

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/

gcc 编译器对 sqrt 未定义的引用

man sqrt  Link with -lm. gcc -o test test.c -lm 原因:缺少某个库,用 -l 参数将库加入。Linux的库命名是一致的, 一般为 libxxx.so, 或 libxxx.a, libxxx.la, 要链接某个库就用   -lxxx,去掉头 lib 及 "." 后面的 so, la, a 等即可。 常见的库链接方法为

一种极简的余弦定理证明方法

余弦定理的证明方法有很多种,这里介绍一种极简的证明方法。该方法是本人在工作中推导公式,无意中发现的。证明非常简单,下面简单做下记录。   如上图为任意三角形ABC,以点C为原点,建立直角坐标系(x轴方向任意,y轴与x轴垂直),x轴与CB夹角为 θ 1 \theta_1 θ1​,x轴与CA夹角为 θ 2 \theta_2 θ2​。点B的坐标为 ( a c o s θ 1 , a s i n θ

零知识证明-ZK-SNARKs基础(七)

前言 这章主要讲述ZK-SNARKs 所用到的算术电路、R1CS、QAP等 1:算术电路 算术运算电路 1>半加器:实现半加运算的逻辑电路 2>全加器:能进行被加数,加数和来自低位的进位信号相加,并根据求和结果给出该位的进位信号 说明:2进制加,低位进位 相当于 结果S为 = A+B+C(地位进位) 高位进位 = A+B+C(地位进位) 三个中 有最少2个为1 高位就有进位了 【1】 方程转算

解决ax+by=c,不定方程(扩展欧几里得)

首先有几个定理我们需要知道,在这里我也会一一证明。 —————————————————————————————————————— 定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中 可用mod表示); 以下是证明过程 —————————————————————————————————————— 令a = k * b + r; (k

云WAF在安全审计和合规性证明方面起到什么作用?

云WAF在安全审计和合规性证明方面起到什么作用? 云WAF的基本功能 云WAF(Cloud Web Application Firewall)是一种部署在云端的网络安全解决方案,它能够为Web应用程序提供强有力的保护,通过检测和阻止恶意流量、攻击和漏洞,确保Web应用程序的安全性和可用性。云WAF具备访问控制、网络安全审计、漏洞检测、应用安全保护、数据安全监控和审计等功能,这些功能共同构成了一

求素数的几个方法(最朴素版、n*sqrt(n)版、埃氏筛、欧拉筛)

最朴素版O(n^2) #include <bits/stdc++.h>using namespace std;int n, cnt, prim[6000000];bool flag; //true 表示质数int main(){scanf("%d", &n);for(int i=2; i<=n; ++i){flag=true; //默认为质数for(int j=2; j<=i-

安全多方计算 同态密文计算 零知识证明 是什么、对比、优缺点

基于计算困难性理论的安全多方计算可以进一步细分为基于混淆电路的方案或者基于秘密分享的方案。 基于混淆电路的方案将所需计算的函数表达成一个巨型的布尔电路,例如,目前表达一次 SHA-256 计算至少需要使用 13 万个布尔门。尽管学术界已经提供了大量优化方案,通用 电路转化的过程依旧很复杂。由于需要使用不经意传输技术来安全地提供电路输入,即便 在有硬件加速的条件下,这类方案的处理吞吐量和计算效率依

再次拿下品牌全球代言人,王鹤棣商业价值再度证明!

9月2日,FENTY BEAUTY品牌正式官宣王鹤棣为全球代言人,这也是该品牌创立至今官宣的中国首位全球代言人。 FENTY BEAUTY是由美国歌手Rihanna创立于2017年的高端美妆品牌,也是LV母公司LVMH集团联手RIHANNA一同孵化的品牌,因其产品具有强包容性,以及能满足消费者多元需求,获得了国际声誉和市场高度认可,品牌全球吸金力排在集团第一梯队,已连年被纳入LVMH集团