零知识证明-ZK-SNARKs基础(七)

2024-09-05 23:36
文章标签 基础 知识 证明 zk snarks

本文主要是介绍零知识证明-ZK-SNARKs基础(七),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言
这章主要讲述ZK-SNARKs 所用到的算术电路、R1CS、QAP等

1:算术电路
算术运算电路
1>半加器:实现半加运算的逻辑电路
2>全加器:能进行被加数,加数和来自低位的进位信号相加,并根据求和结果给出该位的进位信号
说明:2进制加,低位进位 相当于 结果S为 = A+B+C(地位进位)
高位进位 = A+B+C(地位进位) 三个中 有最少2个为1 高位就有进位了
在这里插入图片描述
【1】 方程转算术电路
电路实现参考 https://blog.csdn.net/qq_34793644/article/details/121146036
这里以程序角度去讲解
eg: x3 + x + 5 == 35

// Signal Definition:
// 1、所有的输入都是信号
// 2、每次将两个信号相乘时,都需要定义一个新的信号
// 3、一次只能占用两个信号来获取一个新的信号
// 4、所有的输出都是信号

sym1 = X * X
sym2 = sym1 * X
sym3 = sym2 + X
OUT = sym3 +5

约束 = 4 (上面共4条)

s={ONE,X,OUT,sym1,sym2,sym3} 一共6个 变量
m 为变量数(还需要加个ONE,所以为m+1)
在这里插入图片描述

【2】电路转换成R1CS(Rand-1 Constraint System)
表示计算式的电路转化为向量点积(内积)的形式,即一阶约束系统(Rank-1 Constraint System, R1CS)。R1CS是由三个向量(a, b, c)组成的序列,R1CS的解是一个向量s,其中s必须满足方程
s . a * s . b - s . c = 0

其中 . 代表内积运算。
对于每个门电路,需要定义一组向量(l, r, o),通过向量内积运算使得s∙l×s∙r-s∙o=0,其中s代表全部输入组成的向量,即s=[one, x,y,sym1,C](元素排列没有固定顺序),one表示值为1的虚拟变量
//有效的 R1CS 必须每个约束(在 R1CS 中的一行,在 Circom 中 <==)只有一个乘法。
//如果我们尝试做两个(或更多)乘法,
//这将失败。所有具有多个乘法的约束都需要拆分为两个约束
运算过程如下(手算步骤)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
把一个解代入 得到 S 的列所有的值 这里 根是 3 , one 固定值
在这里插入图片描述
演算过程参考了 https://blog.csdn.net/jambeau/article/details/121175433

最后 A B C
A
[0, 1, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0]
[0, 1, 0, 0, 1, 0]
[5, 0, 0, 0, 0, 1]

B
[0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0]

C
[0, 0, 0, 1, 0, 0]
[0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0]

【3】R1CS 到 QAP
拉格朗日插值法
参考 https://www.bilibili.com/read/cv22217905/
先说插值法。插值法是做什么用的?插值法是通过已知点,求过这些点的未知函数的数学方法。
所以我们输入的,是一堆点,也就是一堆x和一堆y。
我们想要得到的,是一个函数,这个函数能完美的通过这一堆x和这一堆y。
那你要怎么解决这个问题呢?说白了很简单,就是一个开开关的问题。
这就是拉格朗日插值法的想法。

基本公式
P(X) = y0 *  L0(X) + y1 *  L1(X)
参考别人的 https://www.bilibili.com/read/cv22217905/
在这里插入图片描述
P(x) = P(x0)+P(x1)+P(x2) //X 下标从0 开始
L2(x)=l0(x)f(x0)+l1(x)f(x1)+l2(x)f(x2)

eg: 一个多项式经过(1,3),(2,2)和(3,4) ,求多项式
在这里插入图片描述
也可以用牛顿插值法 参考 https://www.bilibili.com/read/cv22217905/

现在我们要将四个长度为六的三向量组转化为六组多项式,每组多项式包括三个三阶多项式,我们在每个 x 点处来评估不同的约束,在这里,我们共有四个约束,因此我们分别用多项式在 x = 1,2,3,4 处来评估这四个向量组。
现在我们使用拉格朗日差值公式来将 R1CS 转化为 QAP 形式。我们先求出四个约束所对应的每个 a 向量的第一个值的多项式,也就是说使用拉格朗日插值定理求过点 (1,0), (2,0), (3,0), (4,0) 的多项式,类似的我们可以求出其余的四个约束所对应的每个向量的第i个值的多项式
结果如下
A polynomials
[-5.0, 9.166, -5.0, 0.833]
[8.0, -11.333, 5.0, -0.666]
[0.0, 0.0, 0.0, 0.0]
[-6.0, 9.5, -4.0, 0.5]
[4.0, -7.0, 3.5, -0.5]
[-1.0, 1.833, -1.0, 0.166]

B polynomials
[3.0, -5.166, 2.5, -0.333]
[-2.0, 5.166, -2.5, 0.333]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]

C polynomials
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[-1.0, 1.833, -1.0, 0.166]
[4.0, -4.333, 1.5, -0.166]
[-6.0, 9.5, -4.0, 0.5]
[4.0, -7.0, 3.5, -0.5]

怎么算的呢这里以A 为例(参考 https://blog.csdn.net/smilejiasmile/article/details/122664331)
多项式在 x = 1,2,3,4 处来评估这四个向量组 (这个就是假设 x 过1,2,3,4点,你也可以用其他的点)
A
[0, 1, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0]
[0, 1, 0, 0, 1, 0]
[5, 0, 0, 0, 0, 1]
那么点就是 (1,y0), (2,y1), (3,y2), (4,y3) 因为 假设的 x 过1,2,3,4点
把A的第一列 4个数字带入 y 得
(1,0), (2,0), (3,0), (4,5)

再用拉格朗日插值法求多项式在这里插入图片描述同理 可以算出 A得第2列…第N列
同理 也可以算出 B,C 的第1列 …第N列

0.833 * x3 - 5 * x2 + 9.166 * x - 5 = -5 + 9.166 * x + 5 * x2 + 0.833 * x3
[-5.0, 9.166, -5.0, 0.833] 系数是升序排序的即 a+b X+ c X2 + d X3 (a b c d为系数)

最后得

A polynomials
[-5.0, 9.166, -5.0, 0.833]
[8.0, -11.333, 5.0, -0.666]
[0.0, 0.0, 0.0, 0.0]
[-6.0, 9.5, -4.0, 0.5]
[4.0, -7.0, 3.5, -0.5]
[-1.0, 1.833, -1.0, 0.166]

B polynomials
[3.0, -5.166, 2.5, -0.333]
[-2.0, 5.166, -2.5, 0.333]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]

C polynomials
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[-1.0, 1.833, -1.0, 0.166]
[4.0, -4.333, 1.5, -0.166]
[-6.0, 9.5, -4.0, 0.5]
[4.0, -7.0, 3.5, -0.5]

抄下别人的
在这里插入图片描述
演示:
A1(x) * B1(x)-C1(x)= 0
A1(x) = [-5.0, 9.166, -5.0, 0.833] = -5 + 9.166 * X -5.0 * X2 + 0.833 * X3
B1(x) = [3.0, -5.166, 2.5, -0.333] = 3.0 - 5.166 * X +2.5 * X2 - 0.333 * X3
C1(x) = [0.0, 0.0, 0.0, 0.0] = 0 + 0 * X +0 * X2 + 0* X3 = 0

当 X = 1 时
A1(x) = -5 + 9.166 * X -5.0 * X2 + 0.833 * X3 = -5+9.166 -5+0.833 = 0
B1(x) = 3.0 - 5.166 * X +2.5 * X2 - 0.333 * X3 = 3.0 -5.166 +2.5 -0.333 = 0
当x = 2时
A1(x) = -5 + 9.166 * X -5.0 * X2 + 0.833 * X3 = -5+9.166 * 2 -5 * 22+0.833 * 23 = -5+18.332-20+6.664 = 0
B1(x) = 3.0 - 5.166 * X +2.5 * X2 - 0.333 * X3 =3.0- 5.166 * 2+2.5 * 22 -0.333 * 23 = 3.0 -10.332+10-2.664 = 0

同理 X=2 也可以计算出来
最后返现 A(x) * B(x) - C(x) = 0 #当X =(1,2,3,4)j就是假设 X通过的点

最后也抄下别人的,难打字画图了(参考 https://blog.csdn.net/smilejiasmile/article/details/122664331)
在这里插入图片描述

Circom snarkjs 都有相应的程序库,有空讲述下用程序实现

如果觉得有用,麻烦点个赞,加个收藏

这篇关于零知识证明-ZK-SNARKs基础(七)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140376

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-