一种极简的余弦定理证明方法

2024-09-06 03:44

本文主要是介绍一种极简的余弦定理证明方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
  余弦定理的证明方法有很多种,这里介绍一种极简的证明方法。该方法是本人在工作中推导公式,无意中发现的。证明非常简单,下面简单做下记录。
  如上图为任意三角形ABC,以点C为原点,建立直角坐标系(x轴方向任意,y轴与x轴垂直),x轴与CB夹角为 θ 1 \theta_1 θ1,x轴与CA夹角为 θ 2 \theta_2 θ2。点B的坐标为 ( a c o s θ 1 , a s i n θ 1 ) (acos\theta_1, asin\theta_1) (acosθ1,asinθ1),点A的坐标为 ( b c o s θ 2 , b s i n θ 2 ) (bcos\theta_2, bsin\theta_2) (bcosθ2,bsinθ2)
  求AB两点的距离:
∣ ∣ A B ∣ ∣ = c = ( b c o s θ 2 − a c o s θ 1 ) 2 + ( b s i n θ 2 − a s i n θ 1 ) 2 = a 2 + b 2 − 2 a b ( c o s θ 2 c o s θ 1 + s i n θ 2 s i n θ 1 ) = a 2 + b 2 − 2 a b c o s ( θ 2 − θ 1 ) = a 2 + b 2 − 2 a b c o s C (1) ||AB||=c=\sqrt{(bcos\theta_2-acos\theta_1)^2+(bsin\theta_2-asin\theta_1)^2} \\ = \sqrt{a^2+b^2-2ab(cos\theta_2cos\theta_1+sin\theta_2sin\theta_1)} \\ = \sqrt{a^2+b^2-2abcos(\theta_2-\theta_1)}=\sqrt{a^2+b^2-2abcosC} \tag 1 ∣∣AB∣∣=c=(bcosθ2acosθ1)2+(bsinθ2asinθ1)2 =a2+b22ab(cosθ2cosθ1+sinθ2sinθ1) =a2+b22abcos(θ2θ1) =a2+b22abcosC (1)
  式(1)两边平方得到余弦定理:
c 2 = a 2 + b 2 − 2 a b c o s C (2) c^2=a^2+b^2-2abcosC \tag 2 c2=a2+b22abcosC(2)
  若 C = π / 2 C=\pi/2 C=π/2 c o s C = 0 cosC=0 cosC=0,由式(2)得到勾股定理:
c 2 = a 2 + b 2 (3) c^2=a^2+b^2 \tag 3 c2=a2+b2(3)
  勾股定理可以认为是余弦定理的特例。证毕。

这篇关于一种极简的余弦定理证明方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140901

相关文章

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

Windows设置nginx启动端口的方法

《Windows设置nginx启动端口的方法》在服务器配置与开发过程中,nginx作为一款高效的HTTP和反向代理服务器,被广泛应用,而在Windows系统中,合理设置nginx的启动端口,是确保其正... 目录一、为什么要设置 nginx 启动端口二、设置步骤三、常见问题及解决一、为什么要设置 nginx

树莓派启动python的实现方法

《树莓派启动python的实现方法》本文主要介绍了树莓派启动python的实现方法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、RASPBerry系统设置二、使用sandroidsh连接上开发板Raspberry Pi三、运

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu