2022最新版-李宏毅机器学习深度学习课程-P46 自监督学习Self-supervised Learning(BERT)

本文主要是介绍2022最新版-李宏毅机器学习深度学习课程-P46 自监督学习Self-supervised Learning(BERT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述:自监督学习模型与芝麻街

参数量

  • ELMO:94M
  • BERT:340M
  • GPT-2:1542M
  • Megatron:8B
  • T5:11B
  • Turing NLG:17B
  • GPT-3:175B
  • Switch Transformer:1.6T

二、Self-supervised Learning⇒Unsupervised Learning的一种

“自监督学习”数据本身没有标签,所以属于无监督学习;但是训练过程中实际上“有标签”,标签是“自己生成的”。

想办法把训练数据分为“两部分”,一部分作为作为“输入数据、另一部分作为“标注”。

三、BERT

💡 作为transformer,理论上BERT的输入长度没有限制。但是为了避免过大的计算代价,在实践中并不能输入太长的序列。 事实上,在训练中,会将文章截成片段输入BERT进行训练,而不是使用整篇文章,避免距离过长的问题。

BERT是一个transformer的Encoder,BERT可以输入一行向量,然后输出另一行向量,输出的长度与输入的长度相同。BERT一般用于自然语言处理,一般来说,它的输入是一串文本。当然,也可以输入语音、图像等“序列”。

Masking Input

随机盖住一些输入的文字,被mask的部分是随机决定的。

MASK的方法:

  • 第一种方法是,用一个特殊的符号替换句子中的一个词,我们用 "MASK "标记来表示这个特殊符号,你可以把它看作一个新字,这个字完全是一个新词,它不在你的字典里,这意味着mask了原文。
  • 另外一种方法,随机把某一个字换成另一个字。中文的 "湾"字被放在这里,然后你可以选择另一个中文字来替换它,它可以变成 "一 "字,变成 "天 "字,变成 "大 "字,或者变成 "小 "字,我们只是用随机选择的某个字来替换它

两种方法都可以使用,使用哪种方法也是随机决定的。

训练方法:

  1. 向BERT输入一个句子,先随机决定哪一部分的汉字将被mask。
  2. 输入一个序列,我们把BERT的相应输出看作是另一个序列
  3. 在输入序列中寻找mask部分的相应输出,将这个向量通过一个Linear transform(矩阵相乘),并做Softmax得到一个分布。
  4. 用一个one-hot vector来表示MASK的字符,并使输出和one-hot vector之间的交叉熵损失最小。

<aside> 💡 本质上,就是在解决一个分类问题。BERT要做的是预测什么被盖住。

</aside>

Next Sentence Prediction(不太有用)

从数据库中拿出两个句子,两个句子之间添加一个特殊标记[SEP],在句子的开头添加一个特殊标记[cls]。这样,BERT就可以知道,这两个句子是不同的句子。

只看CLS的输出,我们将把它乘以一个Linear transform,做一个二分类问题,输出yes/no,预测两句是否前后连续。

没有用

Robustly Optimized BERT Approach(RoBERTa)

Sentence order prediction,SOP(句子顺序预测)⇒ALBERT

挑选的两个句子是相连的。可能有两种可能性供BERT猜测:

  • 句子1在句子2后面相连,
  • 句子2在句子1后面相连。

BERT的实际用途⇒下游任务(Downstream Tasks)

预训练与微调:

  • 预训练:产生BERT的过程
  • 微调:利用一些特别的信息,使BERT能够完成某种任务

 

BERT只学习了两个“填空”任务。

  • 一个是掩盖一些字符,然后要求它填补缺失的字符。
  • 预测两个句子是否有顺序关系。

但是,BERT可以被应用在其他的任务【真正想要应用的任务】上,可能与“填空”并无关系甚至完全不同。【胚胎干细胞】当我们想让BERT学习做这些任务时,只需要一些标记的信息,就能够“激发潜能”

对BERT的评价任务集——GLUE(General Language Understanding Evaluation)

为了测试Self-supervised学习的能力,通常,你会在一个任务集上测试它的准确性,取其平均值得到总分。

性能衡量:

人类的准确度是1,如果他们比人类好,这些点的值就会大于1。

这篇关于2022最新版-李宏毅机器学习深度学习课程-P46 自监督学习Self-supervised Learning(BERT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374206

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;