【编队】基于A星算法实现机器人编队栅格地图巡逻路径规划附matlab代码

本文主要是介绍【编队】基于A星算法实现机器人编队栅格地图巡逻路径规划附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于A*(A-star)算法实现机器人编队栅格地图巡逻路径规划可以通过以下步骤实1. 地图建模:将巡逻区域的地图转化为栅格地图,即将地图划分为网格单元,并确定每个单元的状态,如障碍物、可通过区域和目标等。

  1. 设置起点和目标点:选择机器人的初始位置作为起点,并设置巡逻区域内需要覆盖的目标点。

  2. 定义启发式函数:定义用于评估每个栅格的优先级的启发式函数。启发式函数可根据距离、预计代价和其他因素来评估栅格的优先级,以指导路径搜索过。

  3. 实施A算法:使用A算法搜索最佳路径。通过在栅格上移动并考虑邻居栅,在栅格地图上进行迭代,直到找到目标位置或遍历了所有可能的栅格。

  4. 路径优化:对A*算法得到的路径进行优化,例如使用平滑技术或替代路径搜索方法,确保路径的效率和安全性。

  5. 生成各机器人编队路径:如果有多个机器人组成编队,则可以根据具体任务和编队要求,复制和调整主路径以路径:将生成的路径导入到机器人控制系统中,并实时控制机器人按照路径进行巡逻。

注意的是,A*算法在路径规划中被广泛采用,但在实际应用中可能需要考虑更多的因素,如动态障碍物避免、实时地图更新等。此外,路径规划的准确性也取决于栅格地图的精细度和对环境的准确感知。

⛄ 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A* ALGORITHM% 04-26-2005% Vivian Paul %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clcclose all%DEFINE THE 2-D MAP ARRAYMAX_X=30;MAX_Y=30;MAX_VAL=10;OPEN_COUNT=0;CLOSED_COUNT=0;%This array stores the coordinates of the map and the %Objects in each coordinateMAP=2*(ones(MAX_X,MAX_Y)); % Obtain Obstacle, Target and Robot Position% Initialize the MAP with input values% Obstacle=-1,Target = 0,Robot=1,Space=2i=0;j=0;x_val = 1;y_val = 1;axis([0 MAX_X,0 MAX_Y])set(gca,'xtick',0:1:30,'ytick',0:1:30,'GridLineStyle','-',...     'xGrid','on','yGrid','on') %grid on;hold on;n=0;%Number of Obstaclesrectangle('Position',[7,5,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[7,6,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[7,7,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[7,8,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[23,27,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[23,24,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[23,25,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[23,26,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[29,22,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[28,22,1,1],'FaceColor',[0.3 0.3 0.3]);rectangle('Position',[0,9,1,1],'FaceColor',[0.3 0.3 0.3]);MAP(24,28)=-1;MAP(24,27)=-1;MAP(24,26)=-1;MAP(24,25)=-1;MAP(8,6)=-1;MAP(8,7)=-1;MAP(8,8)=-1;MAP(8,9)=-1;MAP(30,23)=-1;MAP(29,23)=-1;MAP(1,10)=-1;z=1;Optimal_path1=[];m=0;flag=1;for j=29:-1:0    if flag == 1%正向        k=j+1;        while(MAP(m+1,j+1)==-1)           m=m+1;            Optimal_path1(z,1)=m;           Optimal_path1(z,2)=k;           z=z+1;        end        for i=m:1:29            if(MAP(i+1,j+1)==-1)                flag=0;                m=i-1;                break;            else                Optimal_path1(z,1)=i;                Optimal_path1(z,2)=j;                              disp('z:');                 disp(z);                 disp('i');                 disp(i);                 disp('j');                 disp(j);                 z=z+1;                if i==29                   flag=0;                    m=i;                end            end        end    else%反向        k=j+1;        while(MAP(m+1,j+1)==-1)           m=m-1;            Optimal_path1(z,1)=m;           Optimal_path1(z,2)=k;           z=z+1;        end        for i=m:-1:0            if(MAP(i+1,j+1)~=-1)                Optimal_path1(z,1)=i;                Optimal_path1(z,2)=j;                 disp('z:');                 disp(z);                 disp('i');                 disp(i);                 disp('j');                 disp(j);                 z=z+1;                if i==0                   flag=1;                    m=i;                end            else                flag=1;                m=i+1;                break;            end        end    endendplot(Optimal_path1(:,1)+.5,Optimal_path1(:,2)+.5,'linewidth',2);

⛄ 运行结果

⛄ 参考文献

[1] 陆浩.基于人工势场-蚁群算法的多移动机器人编队及路径规划的研究[D].山东科技大学,2020.

[2] 黄晨.多机器人编队控制算法的研究与实现[D].哈尔滨工业大学,2012.DOI:CNKI:CDMD:2.1012.001053.

[3] 王一博.多机器人分布式编队控制算法研究与实现[D].哈尔滨工业大学[2023-07-03].DOI:CNKI:CDMD:2.1014.003445.

[4] 周宇杭,王文明,李泽彬,等.基于A星算法的移动机器人路径规划应用研究[J].电脑知识与技术:学术版, 2020, 16(13):4.DOI:CNKI:SUN:DNZS.0.2020-13-001.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于【编队】基于A星算法实现机器人编队栅格地图巡逻路径规划附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359401

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT