3D目标检测实战 | 图解KITTI数据集评价指标AP R40(附Python实现)

2023-11-06 14:01

本文主要是介绍3D目标检测实战 | 图解KITTI数据集评价指标AP R40(附Python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1 准确率和召回率
  • 2 P-R曲线的绘制
  • 3 AP R11与AP R40标准
  • 4 实际案例

1 准确率和召回率

首先给出 T P TP TP F P FP FP F N FN FN T N TN TN的概念

  • 真阳性 True Positive T P TP TP
    预测为正(某类)且真值也为正(某类)的样本数,可视为 I o U > I o U t h r e s h o l d \mathrm{IoU>IoU_{threshold}} IoU>IoUthreshold的检测框数量
  • 假阳性 False Positive F P FP FP
    预测为正(某类)但真值为负(另一类)的样本数,可视为 I o U ≤ I o U t h r e s h o l d \mathrm{IoU\le IoU_{threshold}} IoUIoUthreshold的检测框数量
  • 真阴性 True Negative T N TN TN
    预测为负(不是某类)且真值也为负(不是某类)的样本数
  • 假阴性 False Negative F N FN FN
    预测为负(不是某类)但真值为正(某类)的样本数,即在真值区域没有给出检测框

基于上述概念给出准确率和召回率的计算方法

  • 准确率 Precision

P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP

  • 召回率 Recall

R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP

准确率 P P P又称为查准率,反映了目标检测的正确性;召回率 R R R又称为查全率,反映了目标检测的泛化性。

在这里插入图片描述

查准率高且查全率高

在这里插入图片描述

查准率高但查全率低

在这里插入图片描述

查准率低但查全率高

2 P-R曲线的绘制

P-R性能也称为准确率-召回率性能,或称查准率-查全率性能,常用于信息检索、Web推荐引擎等应用中。体现P-R性能的主要是P-R曲线,P-R曲线是用于评估二分类模型性能的重要工具,它展示了在不同阈值下模型的准确率和召回率之间的变化关系

P-R曲线的绘制过程是:将预测置信度从高到低排序,依次选择置信度为预测阈值(即大于该阈值的判定为正样本,否则为负样本),计算该阈值下的TP、FN、FP,从而得到准确率和召回率,从高到低移动阈值形成P-R曲线

以一个实例说明绘制过程

假设有10个样本,其中正负样本各5个,按照预测置信度从高到低排序,依次计算准确率和召回率

在这里插入图片描述

将形成的(Precision, Recall)坐标对画到坐标系上可得

在这里插入图片描述
随着样本增加,折现会趋于曲线

3 AP R11与AP R40标准

P-R曲线围成的面积称为平均准确率(Average Precision, AP),用于衡量模型的综合性能

在这里插入图片描述
对于面积的计算,一种方法是积分,但由于曲线形态各异,积分比较耗费计算资源;另一种方法是离散化求和,即用若干个矩形面积来近似曲线下面积

在这里插入图片描述

具体的公式为

A P ∣ R = 1 ∣ R ∣ ∑ r ∈ R ρ i n t e r ( r ) AP\mid_{R}^{}=\frac{1}{\left| R \right|}\sum_{r\in R}{\rho _{\mathrm{inter}}\left( r \right)} APR=R1rRρinter(r)

其中 R = { r 1 , r 2 , ⋯ , r n } R=\left\{ r_1,r_2,\cdots ,r_n \right\} R={r1,r2,,rn}是等间隔的召回率点, R 11 R_{11} R11 R 40 R_{40} R40分别指

R 11 = { 0 , 1 10 , 2 10 , ⋯ , 1 } R 40 = { 1 40 , 2 40 , 3 40 , ⋯ , 1 } R_{11}=\left\{ 0,\frac{1}{10},\frac{2}{10},\cdots ,1 \right\} \\ R_{40}=\left\{ \frac{1}{40},\frac{2}{40},\frac{3}{40},\cdots ,1 \right\} R11={0,101,102,,1}R40={401,402,403,,1}

相当于把召回率等分为 ∣ R ∣ \left| R \right| R个矩形,高度为P-R曲线在该召回率点的准确度。但问题是可能原曲线在该点没有计算准确度指(因为本质上还是离散曲线),因此就引入准确度插值函数

ρ i n t e r ( r ) = max ⁡ r ′ : r ′ > r ρ ( r ′ ) \rho _{\mathrm{inter}}\left( r \right) =\max _{r':r'>r}\rho \left( r' \right) ρinter(r)=r:r>rmaxρ(r)

就是取召回率为 r ′ r' r的位置之后所有准确率的最大值,作为该点的插值准确率,相当于把P-R曲线化成阶梯矩形,如下图蓝色曲线所示,接着按公式计算即可

在这里插入图片描述

R 40 R_{40} R40一定程度上削弱了 R 11 R_{11} R11在准确率很低时,AP结果仍然很高的情况,举例而言

假设一个场景中有20个Ground Truth,但是算法只给出了一个检测结果,且检测的IoU大于阈值,即这是一个TP样本。该置信度下, P r e c i s i o n = 1.0 Precision=1.0 Precision=1.0 R e c a l l = 1 20 = 0.05 Recall=\frac{1}{20}=0.05 Recall=201=0.05

  • 计算 A P ∣ R 11 = 1 11 = 0.0909 AP\mid_{R_{11}}^{}=\frac{1}{11}=0.0909 APR11=111=0.0909,这里的1对应 R 11 R_{11} R11中召回点0,而这个准确率已经超过了很多单目3D检测算法的准确率,显然不合理

在这里插入图片描述

  • 计算 A P ∣ R 40 = 1 + 1 40 = 0.05 AP\mid_{R_{40}}^{}=\frac{1+1}{40}=0.05 APR40=401+1=0.05,这里的1对应 R 40 R_{40} R40中召回点 1 40 \frac{1}{40} 401 2 40 \frac{2}{40} 402

目前KITTI官方也认可了 A P ∣ R 40 AP\mid_{R_{40}}^{} APR40指标,后续基本也采用 A P ∣ R 40 AP\mid_{R_{40}}^{} APR40进行实验评估

以下是KITTI数据集AP检测的实例

Car AP@0.70, 0.70, 0.70:
bbox AP:90.7769, 89.7942, 88.8813
bev  AP:90.0097, 87.9282, 86.4528
3d   AP:88.6137, 78.6245, 77.2243
aos  AP:90.75, 89.66, 88.66
Car AP_R40@0.70, 0.70, 0.70:
bbox AP:95.5825, 94.0067, 91.5784
bev  AP:92.4184, 88.5586, 87.6479
3d   AP:90.5534, 81.6116, 78.6108
aos  AP:95.55, 93.85, 91.33

解释如下:

  • 第一行 Car AP@0.70, 0.70, 0.70

    Car表示类别,AP表示基于AP R11的平均准确率,后面三个0.70分别指代2D检测框、BEV检测框和3D检测框的IoU阈值,即大于这个阈值才认为是正样本

  • 第二、三、四行
    每一行指代一种检测模式,即2D检测框、BEV检测框和3D检测框,每一行的三个数值分别对应EasyModerateHard三种检测难度的的结果,难度越大(例如遮挡严重),检测准确度越小

  • 第五行
    aos表示平均朝向相似度(average orientation similarity),用于评价预测输出的朝向与真实框朝向的相似程度

4 实际案例

在KITTI数据集中,按以下步骤计算AP数值

  1. 计算IoU,这部分原理参考3D目标检测实战 | 详解2D/3D检测框交并比IoU计算(附Python实现)

    frame_overlaps, parted_overlaps, gt_num, dt_num = iou(gt_annos, dt_annos, method, num_parts)
    
  2. 以0置信度阈值计算置信度列表,即只要IoU符合条件的都视为TP样本,提取其置信度评分

    rets = compute(frame_overlaps[i], gt_data_list[i], dt_data_list[i],ignored_gts[i], ignored_dts[i], min_overlap=min_overlap, thresh=0.0)
    _, _, _, _, scores_i = rets
    
  3. 对置信度列表均匀采样41个点,得到40个召回点对应的置信度阈值

    thresholds = getThresholds(np.array(scores), valid_gt_num)def getThresholds(scores: np.ndarray, num_gt, num_sample_pts=41):scores.sort()scores = scores[::-1]current_recall = 0thresholds = []for i, score in enumerate(scores):l_recall = (i + 1) / num_gtif i < (len(scores) - 1):r_recall = (i + 2) / num_gtelse:r_recall = l_recallif (((r_recall - current_recall) < (current_recall - l_recall))and (i < (len(scores) - 1))):continuethresholds.append(score)current_recall += 1 / (num_sample_pts - 1.0)return thresholds
    
  4. 遍历每个阈值,计算该阈值下的TP、FP和FN,从而计算准确率和召回率

    for i in range(len(thresholds)):recall[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 2])precision[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 1])if compute_aos:aos[m, l, k, i] = pr[i, 3] / (pr[i, 0] + pr[i, 1])
    
  5. 取PR曲线外接矩形

    for i in range(len(thresholds)):precision[m, l, k, i] = np.max(precision[m, l, k, i:], axis=-1)recall[m, l, k, i] = np.max(recall[m, l, k, i:], axis=-1)if compute_aos:aos[m, l, k, i] = np.max(aos[m, l, k, i:], axis=-1)
    
  6. 计算AP

    def mAP(prec):sums = 0for i in range(0, prec.shape[-1], 4):sums = sums + prec[..., i]return sums / 11 * 100def mAPR40(prec):sums = 0for i in range(1, prec.shape[-1]):sums = sums + prec[..., i]return sums / 40 * 100
    

在这里插入图片描述

本文完整工程代码请通过下方名片联系博主获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于3D目标检测实战 | 图解KITTI数据集评价指标AP R40(附Python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357061

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画