[work] 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

本文主要是介绍[work] 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。

SGD

此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

g_t=\nabla_{\theta_{t-1}}{f(\theta_{t-1})}

\Delta{\theta_t}=-\eta*g_t

其中,\eta是学习率,g_t是梯度 SGD完全依赖于当前batch的梯度,所以\eta可理解为允许当前batch的梯度多大程度影响参数更新

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)

  • 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了

 

  • SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】

 

Momentum

momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

m_t=\mu*m_{t-1}+g_t

\Delta{\theta_t}=-\eta*m_t

其中,\mu是动量因子

特点:

  • 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的\mu能够进行很好的加速
  • 下降中后期时,在局部最小值来回震荡的时候,gradient\to0\mu使得更新幅度增大,跳出陷阱
  • 在梯度改变方向的时候,\mu能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛

 

Nesterov

nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。 将上一节中的公式展开可得:

\Delta{\theta_t}=-\eta*\mu*m_{t-1}-\eta*g_t

可以看出,m_{t-1}并没有直接改变当前梯度g_t,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:

g_t=\nabla_{\theta_{t-1}}{f(\theta_{t-1}-\eta*\mu*m_{t-1})}

m_t=\mu*m_{t-1}+g_t

\Delta{\theta_t}=-\eta*m_t

所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:

momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法

Adagrad

Adagrad其实是对学习率进行了一个约束。即:

n_t=n_{t-1}+g_t^2

\Delta{\theta_t}=-\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t

此处,对g_t从1到t进行一个递推形成一个约束项regularizer,-\frac{1}{\sqrt{\sum_{r=1}^t(g_r)^2+\epsilon}}\epsilon用来保证分母非0

特点:

  • 前期g_t较小的时候, regularizer较大,能够放大梯度
  • 后期g_t较大的时候,regularizer较小,能够约束梯度
  • 适合处理稀疏梯度


缺点:

  • 由公式可以看出,仍依赖于人工设置一个全局学习率
  • \eta设置过大的话,会使regularizer过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使gradient\to0,使得训练提前结束

 

Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。 Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

\Delta{\theta_t} = -\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:

E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2

\Delta{x_t}=-\frac{\sqrt{\sum_{r=1}^{t-1}\Delta{x_r}}}{\sqrt{E|g^2|_t+\epsilon}}

其中,E代表求期望。

此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:

  • 训练初中期,加速效果不错,很快
  • 训练后期,反复在局部最小值附近抖动

 

RMSprop

RMSprop可以算作Adadelta的一个特例:

\rho=0.5时,E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):

RMS|g|_t=\sqrt{E|g^2|_t+\epsilon}

此时,这个RMS就可以作为学习率\eta的一个约束:

\Delta{x_t}=-\frac{\eta}{RMS|g|_t}*g_t

特点:

  • 其实RMSprop依然依赖于全局学习率
  • RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
  • 适合处理非平稳目标 - 对于RNN效果很好

 

Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

m_t=\mu*m_{t-1}+(1-\mu)*g_t

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

\hat{m_t}=\frac{m_t}{1-\mu^t}

\hat{n_t}=\frac{n_t}{1-\nu^t}

\Delta{\theta_t}=-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}*\eta

其中,m_tn_t分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望E|g_t|E|g_t^2|的估计;\hat{m_t}\hat{n_t}是对m_tn_t的校正,这样可以近似为对期望的无偏估计。 可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}对学习率形成一个动态约束,而且有明确的范围。

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化 - 适用于大数据集和高维空间

 

Adamax

Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:

n_t=max(\nu*n_{t-1},|g_t|)

\Delta{x}=-\frac{\hat{m_t}}{n_t+\epsilon}*\eta

可以看出,Adamax学习率的边界范围更简单

Nadam

Nadam类似于带有Nesterov动量项的Adam。公式如下:

\hat{g_t}=\frac{g_t}{1-\Pi_{i=1}^t\mu_i}

m_t=\mu_t*m_{t-1}+(1-\mu_t)*g_t

\hat{m_t}=\frac{m_t}{1-\Pi_{i=1}^{t+1}\mu_i}

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

\hat{n_t}=\frac{n_t}{1-\nu^t}\bar{m_t}=(1-\mu_t)*\hat{g_t}+\mu_{t+1}*\hat{m_t}

\Delta{\theta_t}=-\eta*\frac{\bar{m_t}}{\sqrt{\hat{n_t}}+\epsilon}

可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。

经验之谈

  • 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
  • SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
  • 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
  • Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
  • 在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果


最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了... ...

 

损失平面等高线

 

 

在鞍点处的比较

 

转载须全文转载且注明作者和原文链接,否则保留维权权利

引用

[1]Adagrad

[2]RMSprop[Lecture 6e]

[3]Adadelta

[4]Adam

[5]Nadam

[6]On the importance of initialization and momentum in deep learning

[7]Keras中文文档

[8]Alec Radford(图)

[9]An overview of gradient descent optimization algorithms

[10]Gradient Descent Only Converges to Minimizers

[11]Deep Learning:Nature

转自: https://zhuanlan.zhihu.com/p/22252270

这篇关于[work] 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/346851

相关文章

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分