优化的对比度增强算法用于有雾图像的清晰化处理(算法效果是我目前看到最为稳定的,且对天空具有天然的免疫力,极力推荐有需要的朋友研究)

本文主要是介绍优化的对比度增强算法用于有雾图像的清晰化处理(算法效果是我目前看到最为稳定的,且对天空具有天然的免疫力,极力推荐有需要的朋友研究),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博文来自博主Imageshop,打赏或想要查阅更多内容可以移步至Imageshop。

转载自:https://www.cnblogs.com/Imageshop/p/3925461.html    侵删

   在未谈及具体的算法流程前,先贴几幅用该算法处理的效果。

  不知道各位对这个算法的效果第一印象如何。

      这个算法的原理来自于文章《Optimized contrast enhancement for real-time image and video dehazing》,作者是韩国人。

      这个算法也是基于大气散射模型:

          

   和现在一些常见的去雾文章有明显的不同的是,这篇文章的并不是基于暗通道原理的,也不是把重点强调在透射率图的细化上,而是提出了一种新的得到粗透射率图的方法。并且文章分别讲到了静态图像和视频图像的去雾,这里我只研究了静态图的去雾。

      对于透射率图,文章提出了一个cost function,这个cost function是基于以下两点考虑的:

      1、对于有雾图像,其整体的对比比较低,因此去雾后的对比度要尽量的高,文中给出了三种测评一幅图像对比度的方式,这里选用的是第一种:

                    

    公式具体的意义可见论文。注意上面的公式都是对去雾图进行的处理。

  2、 由于对比度得到增强,可能会导致部分像素的调整值超出了0和255的范围,这样就会造成信息的损失以及视觉上的瑕疵。因此提出了一个信息量损失的计算公式:

                                                

     一个好的透射率图应该使得总的损失最小:

                                      

       其中Lamda值用于控制对比度和信息损失之间的重要性。

            进行上述过程还有一个重要的前提就是:对于一小块图像,我们认为他的透射率是一样的,以下作者提供的代码表面了这一点:

复制代码

for(nY=0; nY<nHei; nY+=m_nTBlockSize)
{for(nX=0; nX<nWid; nX+=m_nTBlockSize){fTrans = NFTrsEstimationPColor(pnImageR, pnImageG, pnImageB, pnImageRP, pnImageGP, pnImageBP, pfTransmissionP, __max(nX, 0), __max(nY, 0), nWid, nHei);for(nYstep=nY; nYstep<nY+m_nTBlockSize; nYstep++){for(nXstep=nX; nXstep<nX+m_nTBlockSize; nXstep++){pfTransmission[nYstep*nWid+nXstep] = fTrans;}}}
}

复制代码

  其中的NFTrsEstimationPColor是用来估计一个块的最佳透射率值,作者在编程时,是将透射率按照0.1的间距进行取样,然后找到使得上式最小值得那个透射率作为这个块的透射率。

复制代码

nEndX = __min(nStartX+m_nTBlockSize, nWid); // End point of the block
nEndY = __min(nStartY+m_nTBlockSize, nHei); // End point of the blocknNumberofPixels = (nEndY-nStartY)*(nEndX-nStartX);    fTrans = 0.3f;    // Init trans is started from 0.3
nTrans = 427;    // Convert transmission to integer for(nCounter=0; nCounter<7; nCounter++)
{nSumofSLoss = 0;nLossCount = 0;nSumofSquaredOuts = 0;nSumofOuts = 0;for(nY=nStartY; nY<nEndY; nY++){for(nX=nStartX; nX<nEndX; nX++){nOut = ((pnImageY[nY*nWid+nX] - m_nAirlight)*nTrans + 128*m_nAirlight)>>7; // (I-A)/t + A --> ((I-A)*k*128 + A*128)/128nSquaredOut = nOut * nOut;if(nOut>255){nSumofSLoss += (nOut - 255)*(nOut - 255);nLossCount++;}else if(nOut < 0){nSumofSLoss += nSquaredOut;nLossCount++;}nSumofSquaredOuts += nSquaredOut;nSumofOuts += nOut;}}fMean = (float)(nSumofOuts)/(float)(nNumberofPixels);  fCost = m_fLambda1 * (float)nSumofSLoss/(float)(nNumberofPixels) - ((float)nSumofSquaredOuts/(float)nNumberofPixels - fMean*fMean); if(nCounter==0 || fMinCost > fCost){fMinCost = fCost;fOptTrs = fTrans;}fTrans += 0.1f;nTrans = (int)(1.0f/fTrans*128.0f);
}

复制代码

  朋友们有没有看到上面的代码中的最小透射率是0.3,我个人认为这个只能够有效的避免天空部位被过增强。

      文中提到了这个方法也可以看成是何凯明的暗通道去雾算法的一个更广义的定义。

     在这个文章,还提出了另外一个和其他算法不同的东西,就是全局大气光A的获取,其主要原理是: the variance of pixel values is generally low in hazy regions, e.g. sky. 具体的操作流程是:

       we first divide an input image into four rectangular regions. We then define the score of each region as the average pixel value subtracted by the standard deviation of the pixel values within the region. Then, we select the region with the highest score and divide it further into four smaller regions.We repeat this process until the size of the selected region is smaller than a pre-specified threshold. Within the selected region, we choose the color vector, which minimizes the distance ||(R,G,B) -(255,255,255)||as the atmospheric light. By minimizing the distance from the pure white vector(255,255,255), we attempt to choose the atmospheric light that is as bright as possible.

  结合上述描述以及论文配套的代码可以很容易的理解这里的道理。论文的配套代码的实现也很好。

  具体的流程还是请各位仔细的阅读论文及其代码,经过我自己的优化和实践,这个算法确实能得到很不错的效果,在速度上也能够达到实时。

      在贴一些效果图(有的时候只有看到这些图,才很有成就感)。

 

效果测试程序:http://files.cnblogs.com/Imageshop/HazeRemovalBasedonContrastEnhancement.rar

 论文及原作者的代码下载地址:http://mcl.korea.ac.kr/projects/dehazing/#userconsent# (这个源代码是OPENCV写的,估计要配置很久才能顺利运行,我反正没有去弄,只是结合他的论文和代码在自己实现).

这篇关于优化的对比度增强算法用于有雾图像的清晰化处理(算法效果是我目前看到最为稳定的,且对天空具有天然的免疫力,极力推荐有需要的朋友研究)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341669

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤