【计算机视觉基础】最大核聚类,采用Canny等边缘滤波方法对图像边缘提取,提取图像的Harris角点特征并进行沃罗诺伊与德劳内网格划分,显示沃罗诺伊划分的最大核聚类,详细的最大核聚类计算算法

本文主要是介绍【计算机视觉基础】最大核聚类,采用Canny等边缘滤波方法对图像边缘提取,提取图像的Harris角点特征并进行沃罗诺伊与德劳内网格划分,显示沃罗诺伊划分的最大核聚类,详细的最大核聚类计算算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 问题描述如下:

  1. 分别采用Sobel、Prewitt、Canny边缘滤波方法对一张彩色进行边缘特征提取,并分别显示对应的边缘图像,
  2. 获取要求1中彩色图像上的Harris角点特征,基于生成的角点特征对要求1生成的Canny边缘图像进行德劳内网格划分与沃罗诺伊网格划分,要求两种划分分别单独显示在边缘检测结果图像上;
  3. 编写代码实现要求2中沃罗诺伊网格划分的最大核聚类:挑选并显示该沃罗诺伊网格划分的最大核取类结果;或指定沃罗诺伊网格划分图像中的某个沃罗诺伊区域为核,生成并显示该核的最大核聚类结果;这里实现最大核聚类的方法采用遍历每一个沃罗诺伊网格,选出最大的沃罗诺伊网格作为核并生成最大核聚类。

实现的程序代码如下: 

clear
clc
%% 1、三种滤波方法提取边缘特征
I=imread('peppers.png');
Igy=rgb2gray(I);
Isob=edge(Igy,'Sobel');
Iprew=edge(Igy,'Prewitt');
Icany=edge(Igy,'Canny');
figure('Name','边缘特征提取','NumberTitle','off')
subplot(221),imshow(I),title('原彩色图像')
subplot(222),imshow(~Isob),title('Sobel滤波器提取边缘')
subplot(223),imshow(~Iprew),title('Prewitt滤波器提取边缘')
subplot(224),imshow(~Icany),title('Canny滤波器提取边缘')
%% 2、德劳内剖分与沃罗诺伊剖分
corns=detectHarrisFeatures(Igy);
corns2=corns.Location;
corns2=double(corns2);
TC=delaunay(corns2(:,1),corns2(:,2));
figure('Name','德劳内与沃罗诺伊','NumberTitle','off')
subplot(121),imshow(~Icany),title('德劳内网格划分'),hold on
triplot(TC,corns2(:,1),corns2(:,2),'b-')
subplot(122),imshow(~Icany),title('沃罗诺伊网格划分'),hold on
voronoi(corns2(:,1),corns2(:,2),'r'),hold on%% 3、最大核聚类
[v,p]=voronoin(corns2);#得到voronoi网格顶点的坐标矩阵和voronoi网格顶点的坐标矩阵中的行索引的单元数组
for i=1:length(p)
chdu(i)=length(p{i,1});
end
chadu=chdu';
[z,wz]=max(chadu);
figure('Name','最大核聚类','NumberTitle','off')
imshow(~Icany),hold on
suoyin=p{wz,1};
julei=v(suoyin,:);
jleix=[julei(:,1)' julei(1,1)];
jleiy=[julei(:,2)' julei(1,2)];
m=1;
for i=1:length(p)#挑选与最大核相连的沃罗诺伊网格A=p{i,1};for k=1:length(suoyin)B=find(A==suoyin(k));if isempty(B)==0jlyuan{m,1}=A;m=m+1;endend
end
for i=1:length(jlyuan)ljieyb=v(jlyuan{i,1},:);patch(ljieyb(:,1),ljieyb(:,2),'y'),hold on
end
plot(jleix,jleiy,'Color','c','LineWidth',3)
patch(jleix,jleiy,'m'),hold on
voronoi(corns2(:,1),corns2(:,2),'r'),hold on
plot(corns2(wz,1),corns2(wz,2),'b'),hold on

程序算法原理如下 :

  1. 我首先使用函数rgb2gray将彩色图像转换为灰度图像,然后使用函数edge对灰度图像进行边缘特征提取,首先将函数edge的参数method设为‘Sobel’,获得图像通过Sobel滤波方法进行边缘特征提取得到的边缘图像,然后分别将此参数设为‘Prewitt’和‘Canny’,分别获得图像通过Prewitt和Canny滤波方法进行边缘特征提取得到的边缘图像,最后使用函数imshow显示获得的各边缘图像的负像,负像看起来更清晰。检测结果的差异性我将在实验总结中进行分析。
  2. 对灰度后图像使用函数detectHarrisFeatures获得使用Harris方法计算的步骤1中彩色图像的图像角点,然后使用函数delaunay创建图像的Harri角点的二维德劳内三角剖分,先使用函数imshow显示步骤1中的Canny边缘图像的负像,并使用命令hold on保持,再使用函数triplot显示德劳内三角剖分,从而获得边缘图像上的德劳内网格划分;再然后使用函数voronoi将Harris角点的沃罗诺伊网格绘制在Canny边缘图像上,获得边缘图像上的沃罗诺伊网格划分。结果分析将在实验总结中说明。
  3. 首先我使用函数voronoin(详细介绍请在matlab命令窗口输入doc+voronoin,函数voronoin与voronoi不同)获得图像Harris角点的voronoi网格顶点的坐标矩阵和保存了所有voronoi元胞的所有voronoi顶点在voronoi网格顶点的坐标矩阵中的行索引的单元数组,一个元胞就是一个沃罗诺伊网格,而以某个元胞为核的聚类的大小可以通过其边的数量确定,而元胞的voronoi顶点的数量同样对应着边的数量,所以我要通过元胞的voronoi顶点的索引的数量,也就是单元数组中保存的行索引数组的长度来判断以某个元胞为核的聚类的大小,进而来寻找最大核聚类的核,所以直接在单元数组中遍历一遍计算每行索引数组的长度,然后使用函数max获得具有最大的长度的行索引数组在单元数组中的位置,利用位置在单元数组中读取这个行索引数组,这个行索引数组就是最大核聚类的核的所有voronoi顶点的行索引数组,然后利用其行索引数组在保存了voronoi网格顶点的坐标矩阵中读取最大核聚类的核的所有voronoi顶点的坐标,至此就在图像的沃罗诺伊网格划分中找到了最大核聚类的核对应的元胞;再利用上述相似的方法,利用元胞的顶点去锁定一个元胞,来寻找出最大核聚类中出了核之外的元胞,因为在最大核聚类中的元胞肯定有一个voronoi顶点与核的voronoi顶点相同,那么就是说在最大核聚类的所有元胞的voronoi顶点的行索引数组中都会有与核的voronoi顶点的行索引数组中的元素,所以遍历保存了voronoi顶点的行索引数组的单元数组,找出所有包含了最大核聚类的核的voronoi顶点的行索引数组元素的行索引数组,通过这些行索引数组就可以在保存了voronoi网格顶点的坐标矩阵中读取最大核聚类的所有voronoi顶点的在图像中的坐标,所以就锁定了整个最大核聚类,最后先使用函数imshow显示Canny边缘图像并保持,再使用函数patch利用获得最大核聚类中所有元胞的voronoi顶点坐标对最大核聚类区域改变颜色,以显示最大核聚类,再使用patch函数利用最大核聚类的核的voronoi顶点对核对应的元胞改变颜色,以显示最大核聚类核。

程序运行结果如下:

1、三种滤波方法提取边缘特征

2、德劳内剖分与沃罗诺伊剖分

 3、沃罗诺伊最大核聚类

 最大核聚类算法比较复杂,在算法原理中的描述比较详细,仔细阅读同时运行程序,利用matlab的帮助窗口,可以找到我在算法原理中的一些属性的描述,也可以通过工作区的变量进行查看,查看这些变量的属性,算法适用于所有图像,可以计算出任意一幅图像的最大核聚类,并在沃罗诺伊划分上显示。(matlab帮助窗口使用:doc+函数名。可以得到更加详细的用法介绍),如有其他疑问欢迎留言提问或者私信博主。

 别忘了给博主点个赞哦!

关注博主,学习更多计算机视觉与图像处理知识!

原创内容,未经允许不得转载!

最大核聚类算法属于博主原创方法。 

这篇关于【计算机视觉基础】最大核聚类,采用Canny等边缘滤波方法对图像边缘提取,提取图像的Harris角点特征并进行沃罗诺伊与德劳内网格划分,显示沃罗诺伊划分的最大核聚类,详细的最大核聚类计算算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338277

相关文章

SpringBoot整合easy-es的详细过程

《SpringBoot整合easy-es的详细过程》本文介绍了EasyES,一个基于Elasticsearch的ORM框架,旨在简化开发流程并提高效率,EasyES支持SpringBoot框架,并提供... 目录一、easy-es简介二、实现基于Spring Boot框架的应用程序代码1.添加相关依赖2.添

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL