机器人控制算法——TEB算法障碍物检测分析

2023-11-02 09:36

本文主要是介绍机器人控制算法——TEB算法障碍物检测分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.Background

在规划路线的时,需要机器人路线附近的障碍物距离,机器人控制系统需要知道当前机器人与障碍物最短的距离。本文主要是分析如何计算机器人与障碍物的距离,如果将机器人和障碍物分别考虑成质点,机器人与障碍物的距离就很容易求解了,但是事实上,障碍物与机器人在实际工程中不可能是质点。因此,本文需要解决的是:
机器人形状分别圆形、线性、多边形,障碍物也分别是圆形、线性、多边形时,二者的最小距离求解。

2.Algorithm

TEB算法的障碍物程序的入口在此处:

void TebOptimalPlanner::AddEdgesObstacles(double weight_multiplier){if (cfg_->optim.weight_obstacle==0 || weight_multiplier==0 || obstacles_==nullptr )return; // if weight equals zero skip adding edges!bool inflated = cfg_->obstacles.inflation_dist > cfg_->obstacles.min_obstacle_dist;Eigen::Matrix<double,1,1> information;information.fill(cfg_->optim.weight_obstacle * weight_multiplier);//mat.fill(n) 将 mat 的所有元素均赋值为 nEigen::Matrix<double,2,2> information_inflated;information_inflated(0,0) = cfg_->optim.weight_obstacle * weight_multiplier;information_inflated(1,1) = cfg_->optim.weight_inflation;information_inflated(0,1) = information_inflated(1,0) = 0;std::vector<Obstacle*> relevant_obstacles;relevant_obstacles.reserve(obstacles_->size());// iterate all teb points (skip first and last)for (int i=1; i < teb_.sizePoses()-1; ++i){double left_min_dist = std::numeric_limits<double>::max();double right_min_dist = std::numeric_limits<double>::max();Obstacle* left_obstacle = nullptr;Obstacle* right_obstacle = nullptr;relevant_obstacles.clear();const Eigen::Vector2d pose_orient = teb_.Pose(i).orientationUnitVec();// iterate obstaclesfor (const ObstaclePtr& obst : *obstacles_){// we handle dynamic obstacles differently below  //我们以不同的方式处理下面的动态障碍if(cfg_->obstacles.include_dynamic_obstacles && obst->isDynamic())continue;// calculate distance to robot model// //! 根据不同的机器人模型(点,圆,多边形等),不同的障碍物模型(点,线,多边形),有不同的距离计算方法double dist = robot_model_->calculateDistance(teb_.Pose(i), obst.get());
1. 机器人是圆形时
(1)障碍物是圆形时:
        /*** @brief Calculate the distance between the robot and an obstacle* @param current_pose Current robot pose* @param obstacle Pointer to the obstacle* @return Euclidean distance to the robot*/virtual double calculateDistance(const PoseSE2& current_pose, const Obstacle* obstacle) const{return obstacle->getMinimumDistance(current_pose.position()) - radius_;}
        // implements getMinimumDistance() of the base classvirtual double getMinimumDistance(const Eigen::Vector2d& position) const{return (position-pos_).norm() - radius_;}

使用机器人坐标计算出机器人坐标与障碍物坐标的距离,然后再分别减去机器人的半径radius_和障碍物的半径radius_即可

(2)障碍物是多边形
 virtual double getMinimumDistance(const Eigen::Vector2d& position) const{return distance_point_to_polygon_2d(position, vertices_);}
/*** @brief Helper function to calculate the smallest distance between a point and a closed polygon* @param point 2D point* @param vertices Vertices describing the closed polygon (the first vertex is not repeated at the end)* @return smallest distance between point and polygon
*/inline double distance_point_to_polygon_2d(const Eigen::Vector2d& point, const Point2dContainer& vertices){double dist = HUGE_VAL;// the polygon is a pointif (vertices.size() == 1){return (point - vertices.front()).norm();}// check each polygon edgefor (int i=0; i<(int)vertices.size()-1; ++i){double new_dist = distance_point_to_segment_2d(point, vertices.at(i), vertices.at(i+1));
//       double new_dist = calc_distance_point_to_segment( position,  vertices.at(i), vertices.at(i+1));if (new_dist < dist)dist = new_dist;}if (vertices.size()>2) // if not a line close polygon 数组头和尾顶点的边也要算上{double new_dist = distance_point_to_segment_2d(point, vertices.back(), vertices.front()); // check last edgeif (new_dist < dist)return new_dist;}return dist;}

position是机器人圆心位置坐标,vertices_为多边形的顶点,我们会使用循环计算出来,机器人位置与多边形的每条边的距离(本质就是点到直线距离的求解),然后取最小,最小的距离再减去机器人圆形的半径就是机器人距离障碍物的最小距离。

2. 机器人是多变形
障碍物是多边形时,这种是最复杂的情况求解。
          * @brief Calculate the distance between the robot and an obstacle* @param current_pose Current robot pose* @param obstacle Pointer to the obstacle* @return Euclidean distance to the robot*/virtual double calculateDistance(const PoseSE2& current_pose, const Obstacle* obstacle) const{Point2dContainer polygon_world(vertices_.size());transformToWorld(current_pose, polygon_world);return obstacle->getMinimumDistance(polygon_world);}
       // implements getMinimumDistance() of the base classvirtual double getMinimumDistance(const Point2dContainer& polygon) const{return distance_polygon_to_polygon_2d(polygon, vertices_);}

polygon代表机器人的多边形形状的顶点, vertices_代表障碍物的多边形的顶点。

/*** @brief Helper function to calculate the smallest distance between two closed polygons* @param vertices1 Vertices describing the first closed polygon (the first vertex is not repeated at the end)* @param vertices2 Vertices describing the second closed polygon (the first vertex is not repeated at the end)* @return smallest distance between point and polygon
*/inline double distance_polygon_to_polygon_2d(const Point2dContainer& vertices1, const Point2dContainer& vertices2){double dist = HUGE_VAL;// the polygon1 is a pointif (vertices1.size() == 1){return distance_point_to_polygon_2d(vertices1.front(), vertices2);}// check each edge of polygon1for (int i=0; i<(int)vertices1.size()-1; ++i){double new_dist = distance_segment_to_polygon_2d(vertices1[i], vertices1[i+1], vertices2);if (new_dist < dist)dist = new_dist;}if (vertices1.size()>2) // if not a line close polygon1{double new_dist = distance_segment_to_polygon_2d(vertices1.back(), vertices1.front(), vertices2); // check last edgeif (new_dist < dist)return new_dist;}return dist;}

这个代码的思路就是,以障碍物的顶点为准,然后循环计算该顶点和机器人的多边形每个边的距离(本质也是点到直线距离,很容易求解)并记录最短距离,然后障碍物的顶点遍历完即可,这样找对了最小距离。

3.Summary

上述没有介绍全,机器人有好多形状,障碍物也有好多形状,二者随机组合,就会出现不同的距离求解方法,具体可去看TEB开源代码。

这篇关于机器人控制算法——TEB算法障碍物检测分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329697

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺