傅里叶谱方法-傅里叶谱方法求解二维浅水方程组和二维粘性 Burgers 方程及其Matlab程序实现

本文主要是介绍傅里叶谱方法-傅里叶谱方法求解二维浅水方程组和二维粘性 Burgers 方程及其Matlab程序实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3.3.2 二维浅水方程组

二维浅水方程组是描述水波运动的基本方程之一。它主要用于描述近岸浅水区域内的波浪、潮汐等水动力学现象。这个方程组由两个偏微分方程组成,一个是质量守恒方程,另一个是动量守恒方程。浅水方程描述了具有自由表面、密度均匀、深度较浅的液体在重力作用下的流动过程, 用于研究潮波和河流,具体形式如下:
{ ∂ η ∂ t = − ∂ ( η u ) ∂ x − ∂ ( η v ) ∂ y ∂ u ∂ t = − v ∂ u ∂ y − u ∂ u ∂ x − g ∂ η ∂ x ∂ v ∂ t = − u ∂ v ∂ x − v ∂ v ∂ y − g ∂ η ∂ y (3-34) \left\{\begin{array}{l} \frac{\partial \eta}{\partial t}=-\frac{\partial(\eta u)}{\partial x}-\frac{\partial(\eta v)}{\partial y} \\ \frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial y}-u \frac{\partial u}{\partial x}-g \frac{\partial \eta}{\partial x} \\ \frac{\partial v}{\partial t}=-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-g \frac{\partial \eta}{\partial y} \end{array}\right.\tag{3-34} tη=x(ηu)y(ηv)tu=vyuuxugxηtv=uxvvyvgyη(3-34)
其中, η \eta η 代表水深, t t t 为时间, x x x y y y 是水平面上的坐标, u 、 v u 、 v uv x x x y y y 方向上的流速, g g g 为重力加速度。物理上,这个方程组描述了水波在浅水区域内的传播和运动。它假设水深相对于波长很小,即波长远大于水深,这样就可以近似将水流速度视为垂直于水深方向的,这被称为“浅水近似”。

在实际应用中,二维浅水方程组被广泛用于预测海洋和河流等水动力学现象。例如,可以用它来预测风浪的形成和演变,或者用它来优化海岸线防护结构的设计。

需要注意的是,二维浅水方程组是一种近似模型,它对真实的水动力学现象只能提供近似的描述,实际情况可能更加复杂。因此,在具体应用中,需要根据实际情况选择合适的模型并对其进行修正和调整。对方程组 (3-34) 的等号两边做 x − y x-y xy 空间上的二维傅里叶变换, 得到偏微分方程组:
{ ∂ η ^ ^ ∂ t = − i k x F { F − 1 [ η ^ ^ ] F − 1 [ u ~ ^ ] } − i k y F { F − 1 [ η ~ ^ ] F − 1 [ v ^ ] } ∂ u ^ ^ ∂ t = − F { F − 1 [ v ^ ^ ] ⋅ F − 1 [ i k y u ^ ^ ] + F − 1 [ u ⃗ ^ ] ⋅ F − 1 [ i k x u ^ ] } − i g k x η ^ ^ ∂ v ^ ∂ t = − F { F − 1 [ u ^ ] ⋅ F − 1 [ i k x v ^ ] + F − 1 [ v ^ ] ⋅ F − 1 [ i k y v ^ ] } − i g k y η ^ ^ (3-35) \left\{\begin{array}{l} \frac{\partial \hat{\hat{\eta}}}{\partial t}=-\mathrm{i} k_x F\left\{F^{-1}[\hat{\hat{\eta}}] F^{-1}[\hat{\tilde{u}}]\right\}-\mathrm{i} k_y F\left\{F^{-1}[\hat{\tilde{\eta}}] F^{-1}[\hat{v}]\right\} \\ \frac{\partial \hat{\hat{u}}}{\partial t}=-F\left\{F^{-1}[\hat{\hat{v}}] \cdot F^{-1}\left[\mathrm{i} k_y \hat{\hat{u}}\right]+F^{-1}[\hat{\vec{u}}] \cdot F^{-1}\left[\mathrm{i} k_x \hat{u}\right]\right\}-\mathrm{i} g k_x \hat{\hat{\eta}} \\ \frac{\partial \hat{v}}{\partial t}=-F\left\{F^{-1}[\hat{u}] \cdot F^{-1}\left[\mathrm{i} k_x \hat{v}\right]+F^{-1}[\hat{v}] \cdot F^{-1}\left[\mathrm{i} k_y \hat{v}\right]\right\}-\mathrm{i} g k_y \hat{\hat{\eta}} \end{array}\right.\tag{3-35} tη^^=ikxF{F1[η^^]F1[u~^]}ikyF{F1[η~^]F1[v^]}tu^^=F{F1[v^^]F1[ikyu^^]+F1[u ^]F1[ikxu^]}igkxη^^tv^=F{F1[u^]F1[ikxv^]+F1[v^]F1[ikyv^]}igkyη^^(3-35)
g = 1 g=1 g=1, 初始条件为 η ( x , y , 0 ) = 0.1 ⋅ exp ⁡ ( − x 2 / 10 − y 2 / 10 ) + 0.1 \eta(x, y, 0)=0.1 \cdot \exp \left(-x^2 / 10-y^2 / 10\right)+0.1 η(x,y,0)=0.1exp(x2/10y2/10)+0.1 u ( x , y , 0 ) = v ( x , y , 0 ) = 0 u(x, y, 0)=v(x, y, 0)=0 u(x,y,0)=v(x,y,0)=0, 用傅里叶谱方法计算上述方程的代码如下:

主程序代码:

clear all; close all;
L=40; N=64;
x=L/N*[-N/2:N/2-1]; y=x;
kx=2*pi/L*[0:N/2-1 -N/2:-1]; ky=kx;
[X,Y]=meshgrid(x,y);
[kX,kY]=meshgrid(kx,ky);
%初始条件
e=0.1*exp(-X.^2/10-Y.^2/10)+0.1;
et=fft2(e); ut=zeros(N^2,1); vt=zeros(N^2,1);
euvt=[et(:); ut; vt;];
%求解
t=[0 5 10 25]; g=1;
[t,euvtsol]=ode45('shallow_water',t,euvt,[],kX,kY,N,g);
%画图
for n=1:4subplot(2,2,n)mesh(x,y,real(ifft2(reshape(euvtsol(n,1:N^2),N,N))))axis([-20 20 -20 20 0.1 0.2]), title(['t=' num2str(t(n))])xlabel x, ylabel y, zlabel \eta, view(-80,45)
end

程序输出结果如图所示, 从 t = 0 t=0 t=0 时刻开始, 一个三维高斯形水柱在重力的作用下坍塌, 并激起了向四周传播的圆形水波。
浅水方程的计算结果

3.3.3 二维粘性 Burgers 方程

Burgers方程是一种非线性偏微分方程,它最初由荷兰数学家J. M. Burgers在20世纪30年代提出,用于描述一维粘性流体中的流动行为。

Burgers方程在物理学中具有广泛的应用。它可以用于模拟一维粘性流体中的多种现象,如激波、涡旋、湍流等。在流体力学中,Burgers方程常用于模拟流体中的湍流现象,如湍流尾流、湍流边界层等。在量子场论中,Burgers方程被用于描述费米子系统中的量子涡旋。

Burgers方程还是一些数值方法和数学工具的基础,如Shocks-capturing方法、Lax-Friedrichs格式等。这些方法可以有效地处理Burgers方程中出现的激波等非线性现象,从而得到比较精确的数值解。

Burgers方程也是非线性动力学中一个重要的模型。它的解可能会出现奇点和激波等非线性现象,这些现象为非线性偏微分方程的研究提供了新的思路和挑战。通过对Burgers方程的研究,可以深入了解非线性动力学中的一些重要现象和性质。

此外,Burgers方程还被应用于宏观经济学中的一些问题,如经济增长、通货膨胀等。通过对Burgers方程的应用,可以揭示一些经济现象的本质规律和机制。

除了上述介绍的应用和研究方向,Burgers方程还有以下一些特点和性质:

Burgers方程是一种具有非线性扰动传递性的方程。这意味着,当一个扰动在Burgers方程中传播时,它会不断地变形和扩散,从而形成复杂的结构。

Burgers方程可以通过一些数学方法和技巧来求解。其中比较常用的方法包括Burgers方程的相似变换、行波解法和反演公式等。
Burgers方程的解可能会出现激波、奇点等非线性现象。这些现象具有一定的物理意义,并且对于解决实际问题具有重要的作用。

Burgers方程可以被看作是Navier-Stokes方程的一维版本,它描述了粘性流体中的一些基本特性和行为。因此,Burgers方程在流体力学中有着重要的应用和研究价值。

Burgers方程还可以被拓展到更高维度或者更复杂的情形下。例如,二维Burgers方程、Burgers-Fisher方程等。

总之,Burgers方程在物理学、数学和工程学等领域具有广泛的应用和研究价值,它的研究和应用也带动了非线性动力学和偏微分方程等领域的发展。

Burgers 方程有钟行孤波和扭波两种形式的行波解(如图)

二维粘性 Burgers 方程的形式如下:
∂ u ∂ t = v ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) u − u ( ∂ ∂ x + ∂ ∂ y ) u (3-36) \frac{\partial u}{\partial t}=v\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right) u-u\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) u\tag{3-36} tu=v(x22+y22)uu(x+y)u(3-36)
其中, u u u 代表速度, x 、 y x 、 y xy 为空间坐标, t t t 为时间, v v v 为粘性系数。对上式做二维傅里叶变换, 得:

∂ u ^ ^ ∂ t = − v ( k x 2 + k y 2 ) u ^ ^ − F { F − 1 [ u ^ ] ⋅ F − 1 [ i ( k x + k y ) u ^ ^ ] } (3-37) \frac{\partial \hat{\hat{u}}}{\partial t}=-v\left(k_x^2+k_y^2\right) \hat{\hat{u}}-F\left\{F^{-1}[\hat{u}] \cdot F^{-1}\left[\mathrm{i}\left(k_x+k_y\right) \hat{\hat{u}}\right]\right\}\tag{3-37} tu^^=v(kx2+ky2)u^^F{F1[u^]F1[i(kx+ky)u^^]}(3-37)
v = 0.01 v=0.01 v=0.01, 初始条件 u ( x , y , 0 ) = sech ⁡ ( 4 x 2 + 4 y 2 ) u(x, y, 0)=\operatorname{sech}\left(4 x^2+4 y^2\right) u(x,y,0)=sech(4x2+4y2), 傅里叶谱方法的代码如下:

主程序代码:

clear all; close all;
L=4; N=64;
x=L/N*[-N/2:N/2-1]; y=x;
kx=2*pi/L*[0:N/2-1 -N/2:-1]; ky=kx;
[X,Y]=meshgrid(x,y);
[kX,kY]=meshgrid(kx,ky);
K2=kX.^2+kY.^2;
%初始条件
u=sech(4*X.^2+4*Y.^2);
ut=fft2(u);
%求解
v=0.01; t=0:0.4:1.2;
[t,utsol]=ode45('burgers',t,ut(:),[],N,kX,kY,K2,v);
%画图
for n=1:4subplot(2,2,n)mesh(x,y,real(ifft2(reshape(utsol(n,:),N,N))))axis([-2 2 -2 2 0 1]), xlabel x, ylabel y, zlabel uview(46,20), title(['t=' num2str(t(n))])
end

程序执行结果如图所示,初始波形逐渐演变成激波,这是符合实际情况的。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-L46WfgOw-1680611827553)(https://mweb-1307664364.cos.ap-chengdu.myqcloud.com/2023/04/04/untitled12.png)]
当Burgers方程中的初始波形是单峰的、集中在某一区域内的时候,它会随着时间的推移而逐渐演变成为一个激波。这个现象可以通过分析Burgers方程的解得到解释。

在初始时刻,Burgers方程的初始波形会随着时间的推移而扩散,并逐渐变得平缓。然而,由于Burgers方程是一个非线性方程,波形在演化过程中会发生非线性的相互作用,这些相互作用会导致波形逐渐变得不规则,并在某些区域内出现奇点。当波形的斜率超过一定阈值时,这些奇点会形成激波,即波形在激波前是平缓的,但在激波后却是陡峭的。

激波的形成可以用物理学中的震荡现象来解释。当初始波形逐渐演化为激波时,波前的部分会受到高压的压缩,而波后的部分则会受到低压的拉伸,这样就形成了一个压缩波和一个展开波,它们相互作用,最终形成了一个陡峭的激波。

总之,Burgers方程中的初始波形逐渐演变为激波的现象,是由于非线性相互作用导致的,它在物理学和工程学等领域中有着广泛的应用。

这篇关于傅里叶谱方法-傅里叶谱方法求解二维浅水方程组和二维粘性 Burgers 方程及其Matlab程序实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311266

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

python忽略warnings的几种方法

《python忽略warnings的几种方法》本文主要介绍了几种在Python忽略警告信息的方法,,可以使用Python内置的警告控制机制来抑制特定类型的警告,下面就来介绍一下,感兴趣的可以了解一下... 目录方法 1: 使用 warnings 模块过滤特定类型和消息内容的警告方法 2: 使用 warnin