用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...

本文主要是介绍用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8.3 因子载荷矩阵的估计方法

(一)主成分分析法

回顾一下主成分法估计因子载荷矩阵的步骤:求出原变量协方差阵(或相关阵)的前 m 个特征根(考虑累积贡献率),后面的特征根忽略掉

因子载荷矩阵的每一列为前 m 个特征根乘上对应的单位特征向量

特殊因子的方差为 1 - 共同度(即因子载荷该行的平方和)

用原协方差阵减去公因子协方差阵与特殊因子协方差阵,得到残差阵

equation?tex=E%3D%5CSigma-%5Cleft%28%5Chat%7BA%7D+%5Chat%7BA%7D%5E%7B%5Cprime%7D%2B%5Chat%7BD%7D%5Cright%29%3D%5Cleft%28%5Cepsilon_%7Bi+j%7D%5Cright%29_%7Bp+%5Ctimes+p%7D%5C%5C

残差阵元素的平方和为残差平方和

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cepsilon_%7Bi+j%7D%5E%7B2%7D%5C%5C

可以证明(课后习题8-4)

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cvarepsilon_%7Bi+j%7D%5E%7B2%7D%3D%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D-%5Csum_%7Bi%3D1%7D%5E%7Bp%7D%5Cleft%28%5Csigma_%7Bi%7D%5E%7B2%7D%5Cright%29%5E%7B2%7D+%5Cleq+%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D%5C%5C

(二)主因子解

可以看做主成分法的修正(就是迭代思想!)。

假如特殊因子方差的初始估计已知,那么令

equation?tex=R-D%3DA+A%5E%7B%5Cprime%7D%3D%3A+R%5E%7B%2A%7D%7B%5Cscriptsize+%7D+%5C%5C

通过求出

equation?tex=+R%5E%7B%2A%7D 的前 m 个特征根,得到 A 的估计,进而得到 D 的估计。反复迭代直到迭代前后 D 的差别很小就停止。

如果初始估计未知,那么一开始我们就用主成分法得到 A 的估计,进而得到 D 的初始估计。

公因子方差初始估计方法:第 i 个公因子方差取为第 i 个变量与其它所有变量的多重相关系数的平方

第 i 个公因子方差取为第 i 个变量与其它所有变量的相关系数绝对值中最大者

直接取为 1,等价于主成分解(将特殊因子方差忽略).

(三)极大似然估计

假设数据 X1,...,Xn 服从 p 元正态,公因子与特殊因子也假定服从正态。

equation?tex=L%28%5Cmu%2C+A%2C+D%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bd%7D+%5Cfrac%7B1%7D%7B%282+%5Cpi%29%5E%7Bp+%2F+2%7D%7C%5CSigma%7C%5E%7B1+%2F+2%7D%7D+%5Cexp+%5Cleft%5B-%5Cfrac%7B1%7D%7B2%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5E%7B%5Cprime%7D+%5Cboldsymbol%7B%5CSigma%7D%5E%7B-%5Cmathbf%7B1%7D%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5Cright%5D%5C%5C

对于均值和协方差阵可以用其极大似然估计替代,利用求极值的方法可得以下方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cwidehat%7B%5Cmu%7D%3D%5Cbar%7BX%7D+%5C%5C+S+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5Cwidehat%7BA%7D%5Cleft%28I%2B%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%5Cright%29+%5C%5C+%5Cwidehat%7BD%7D%3D%5Coperatorname%7Bdiag%7D%5Cleft%28S-%5Cwidehat%7BA%7D+%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D%5Cright%29+%5Cend%7Barray%7D%5Cright.%5C%5C

其中第二个方程如下得到

equation?tex=%5C%5B%5Cbegin%7Barray%7D%7Bl%7D+S+%3D+%5Chat+A%5Chat+A%27+%2B+D%5C%5C++%5CRightarrow+S%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Cleft%28+%7B%5Chat+A%5Chat+A%27+%2B+D%7D+%5Cright%29%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Chat+A%5Cleft%28+%7BI+%2B+%5Chat+A%27%7BD%5E%7B+-+1%7D%7D%5Chat+A%7D+%5Cright%29+%5Cend%7Barray%7D%5C%5C%5C%5D

上面方程不能给出 A 和 D 唯一的估计,会加一个唯一性条件

equation?tex=%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5CLambda%5C%5C

其中

equation?tex=%5CLambda 是对角阵。

实际计算中也是用迭代的思想,给定初值 D 然后利用第二个方程求 A,再用第三个方程求 D,直到稳定。

8.4 方差最大的正交旋转

(一)为什么考虑因子旋转

建立因子模型不仅要得到公共因子,还要能解释这些公共因子的具体含义。

因子载荷矩阵每一行的元素都不大(因为平方和小于1限制),但一般比较平衡,难以解释。现在希望旋转过后的载荷矩阵每一行元素差异大一些。

这篇关于用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232075

相关文章

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入