用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...

本文主要是介绍用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8.3 因子载荷矩阵的估计方法

(一)主成分分析法

回顾一下主成分法估计因子载荷矩阵的步骤:求出原变量协方差阵(或相关阵)的前 m 个特征根(考虑累积贡献率),后面的特征根忽略掉

因子载荷矩阵的每一列为前 m 个特征根乘上对应的单位特征向量

特殊因子的方差为 1 - 共同度(即因子载荷该行的平方和)

用原协方差阵减去公因子协方差阵与特殊因子协方差阵,得到残差阵

equation?tex=E%3D%5CSigma-%5Cleft%28%5Chat%7BA%7D+%5Chat%7BA%7D%5E%7B%5Cprime%7D%2B%5Chat%7BD%7D%5Cright%29%3D%5Cleft%28%5Cepsilon_%7Bi+j%7D%5Cright%29_%7Bp+%5Ctimes+p%7D%5C%5C

残差阵元素的平方和为残差平方和

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cepsilon_%7Bi+j%7D%5E%7B2%7D%5C%5C

可以证明(课后习题8-4)

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cvarepsilon_%7Bi+j%7D%5E%7B2%7D%3D%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D-%5Csum_%7Bi%3D1%7D%5E%7Bp%7D%5Cleft%28%5Csigma_%7Bi%7D%5E%7B2%7D%5Cright%29%5E%7B2%7D+%5Cleq+%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D%5C%5C

(二)主因子解

可以看做主成分法的修正(就是迭代思想!)。

假如特殊因子方差的初始估计已知,那么令

equation?tex=R-D%3DA+A%5E%7B%5Cprime%7D%3D%3A+R%5E%7B%2A%7D%7B%5Cscriptsize+%7D+%5C%5C

通过求出

equation?tex=+R%5E%7B%2A%7D 的前 m 个特征根,得到 A 的估计,进而得到 D 的估计。反复迭代直到迭代前后 D 的差别很小就停止。

如果初始估计未知,那么一开始我们就用主成分法得到 A 的估计,进而得到 D 的初始估计。

公因子方差初始估计方法:第 i 个公因子方差取为第 i 个变量与其它所有变量的多重相关系数的平方

第 i 个公因子方差取为第 i 个变量与其它所有变量的相关系数绝对值中最大者

直接取为 1,等价于主成分解(将特殊因子方差忽略).

(三)极大似然估计

假设数据 X1,...,Xn 服从 p 元正态,公因子与特殊因子也假定服从正态。

equation?tex=L%28%5Cmu%2C+A%2C+D%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bd%7D+%5Cfrac%7B1%7D%7B%282+%5Cpi%29%5E%7Bp+%2F+2%7D%7C%5CSigma%7C%5E%7B1+%2F+2%7D%7D+%5Cexp+%5Cleft%5B-%5Cfrac%7B1%7D%7B2%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5E%7B%5Cprime%7D+%5Cboldsymbol%7B%5CSigma%7D%5E%7B-%5Cmathbf%7B1%7D%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5Cright%5D%5C%5C

对于均值和协方差阵可以用其极大似然估计替代,利用求极值的方法可得以下方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cwidehat%7B%5Cmu%7D%3D%5Cbar%7BX%7D+%5C%5C+S+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5Cwidehat%7BA%7D%5Cleft%28I%2B%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%5Cright%29+%5C%5C+%5Cwidehat%7BD%7D%3D%5Coperatorname%7Bdiag%7D%5Cleft%28S-%5Cwidehat%7BA%7D+%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D%5Cright%29+%5Cend%7Barray%7D%5Cright.%5C%5C

其中第二个方程如下得到

equation?tex=%5C%5B%5Cbegin%7Barray%7D%7Bl%7D+S+%3D+%5Chat+A%5Chat+A%27+%2B+D%5C%5C++%5CRightarrow+S%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Cleft%28+%7B%5Chat+A%5Chat+A%27+%2B+D%7D+%5Cright%29%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Chat+A%5Cleft%28+%7BI+%2B+%5Chat+A%27%7BD%5E%7B+-+1%7D%7D%5Chat+A%7D+%5Cright%29+%5Cend%7Barray%7D%5C%5C%5C%5D

上面方程不能给出 A 和 D 唯一的估计,会加一个唯一性条件

equation?tex=%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5CLambda%5C%5C

其中

equation?tex=%5CLambda 是对角阵。

实际计算中也是用迭代的思想,给定初值 D 然后利用第二个方程求 A,再用第三个方程求 D,直到稳定。

8.4 方差最大的正交旋转

(一)为什么考虑因子旋转

建立因子模型不仅要得到公共因子,还要能解释这些公共因子的具体含义。

因子载荷矩阵每一行的元素都不大(因为平方和小于1限制),但一般比较平衡,难以解释。现在希望旋转过后的载荷矩阵每一行元素差异大一些。

这篇关于用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232075

相关文章

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python结合Free Spire.PDF for Python实现PDF页面旋转

《Python结合FreeSpire.PDFforPython实现PDF页面旋转》在日常办公或文档处理中,我们经常会遇到PDF页面方向错误的问题,本文将分享如何用Python结合FreeSpir... 目录基础实现:单页PDF精准旋转完整代码代码解析进阶操作:覆盖多场景旋转需求1. 旋转指定角度(90/27

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

java中的DDD思想指的是什么及在Java中的体现详解

《java中的DDD思想指的是什么及在Java中的体现详解》领域驱动设计(简称DDD)是一种软件开发方法,旨在通过对业务领域的深入理解,构建高内聚、低耦合的系统,:本文主要介绍java中的DDD思... 目录前言什么是 DDD(Domain-Driven Design)?核心思想:DDD 的三大核心概念DD