用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...

本文主要是介绍用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8.3 因子载荷矩阵的估计方法

(一)主成分分析法

回顾一下主成分法估计因子载荷矩阵的步骤:求出原变量协方差阵(或相关阵)的前 m 个特征根(考虑累积贡献率),后面的特征根忽略掉

因子载荷矩阵的每一列为前 m 个特征根乘上对应的单位特征向量

特殊因子的方差为 1 - 共同度(即因子载荷该行的平方和)

用原协方差阵减去公因子协方差阵与特殊因子协方差阵,得到残差阵

equation?tex=E%3D%5CSigma-%5Cleft%28%5Chat%7BA%7D+%5Chat%7BA%7D%5E%7B%5Cprime%7D%2B%5Chat%7BD%7D%5Cright%29%3D%5Cleft%28%5Cepsilon_%7Bi+j%7D%5Cright%29_%7Bp+%5Ctimes+p%7D%5C%5C

残差阵元素的平方和为残差平方和

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cepsilon_%7Bi+j%7D%5E%7B2%7D%5C%5C

可以证明(课后习题8-4)

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cvarepsilon_%7Bi+j%7D%5E%7B2%7D%3D%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D-%5Csum_%7Bi%3D1%7D%5E%7Bp%7D%5Cleft%28%5Csigma_%7Bi%7D%5E%7B2%7D%5Cright%29%5E%7B2%7D+%5Cleq+%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D%5C%5C

(二)主因子解

可以看做主成分法的修正(就是迭代思想!)。

假如特殊因子方差的初始估计已知,那么令

equation?tex=R-D%3DA+A%5E%7B%5Cprime%7D%3D%3A+R%5E%7B%2A%7D%7B%5Cscriptsize+%7D+%5C%5C

通过求出

equation?tex=+R%5E%7B%2A%7D 的前 m 个特征根,得到 A 的估计,进而得到 D 的估计。反复迭代直到迭代前后 D 的差别很小就停止。

如果初始估计未知,那么一开始我们就用主成分法得到 A 的估计,进而得到 D 的初始估计。

公因子方差初始估计方法:第 i 个公因子方差取为第 i 个变量与其它所有变量的多重相关系数的平方

第 i 个公因子方差取为第 i 个变量与其它所有变量的相关系数绝对值中最大者

直接取为 1,等价于主成分解(将特殊因子方差忽略).

(三)极大似然估计

假设数据 X1,...,Xn 服从 p 元正态,公因子与特殊因子也假定服从正态。

equation?tex=L%28%5Cmu%2C+A%2C+D%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bd%7D+%5Cfrac%7B1%7D%7B%282+%5Cpi%29%5E%7Bp+%2F+2%7D%7C%5CSigma%7C%5E%7B1+%2F+2%7D%7D+%5Cexp+%5Cleft%5B-%5Cfrac%7B1%7D%7B2%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5E%7B%5Cprime%7D+%5Cboldsymbol%7B%5CSigma%7D%5E%7B-%5Cmathbf%7B1%7D%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5Cright%5D%5C%5C

对于均值和协方差阵可以用其极大似然估计替代,利用求极值的方法可得以下方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cwidehat%7B%5Cmu%7D%3D%5Cbar%7BX%7D+%5C%5C+S+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5Cwidehat%7BA%7D%5Cleft%28I%2B%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%5Cright%29+%5C%5C+%5Cwidehat%7BD%7D%3D%5Coperatorname%7Bdiag%7D%5Cleft%28S-%5Cwidehat%7BA%7D+%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D%5Cright%29+%5Cend%7Barray%7D%5Cright.%5C%5C

其中第二个方程如下得到

equation?tex=%5C%5B%5Cbegin%7Barray%7D%7Bl%7D+S+%3D+%5Chat+A%5Chat+A%27+%2B+D%5C%5C++%5CRightarrow+S%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Cleft%28+%7B%5Chat+A%5Chat+A%27+%2B+D%7D+%5Cright%29%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Chat+A%5Cleft%28+%7BI+%2B+%5Chat+A%27%7BD%5E%7B+-+1%7D%7D%5Chat+A%7D+%5Cright%29+%5Cend%7Barray%7D%5C%5C%5C%5D

上面方程不能给出 A 和 D 唯一的估计,会加一个唯一性条件

equation?tex=%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5CLambda%5C%5C

其中

equation?tex=%5CLambda 是对角阵。

实际计算中也是用迭代的思想,给定初值 D 然后利用第二个方程求 A,再用第三个方程求 D,直到稳定。

8.4 方差最大的正交旋转

(一)为什么考虑因子旋转

建立因子模型不仅要得到公共因子,还要能解释这些公共因子的具体含义。

因子载荷矩阵每一行的元素都不大(因为平方和小于1限制),但一般比较平衡,难以解释。现在希望旋转过后的载荷矩阵每一行元素差异大一些。

这篇关于用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232075

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专