用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...

本文主要是介绍用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8.3 因子载荷矩阵的估计方法

(一)主成分分析法

回顾一下主成分法估计因子载荷矩阵的步骤:求出原变量协方差阵(或相关阵)的前 m 个特征根(考虑累积贡献率),后面的特征根忽略掉

因子载荷矩阵的每一列为前 m 个特征根乘上对应的单位特征向量

特殊因子的方差为 1 - 共同度(即因子载荷该行的平方和)

用原协方差阵减去公因子协方差阵与特殊因子协方差阵,得到残差阵

equation?tex=E%3D%5CSigma-%5Cleft%28%5Chat%7BA%7D+%5Chat%7BA%7D%5E%7B%5Cprime%7D%2B%5Chat%7BD%7D%5Cright%29%3D%5Cleft%28%5Cepsilon_%7Bi+j%7D%5Cright%29_%7Bp+%5Ctimes+p%7D%5C%5C

残差阵元素的平方和为残差平方和

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cepsilon_%7Bi+j%7D%5E%7B2%7D%5C%5C

可以证明(课后习题8-4)

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cvarepsilon_%7Bi+j%7D%5E%7B2%7D%3D%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D-%5Csum_%7Bi%3D1%7D%5E%7Bp%7D%5Cleft%28%5Csigma_%7Bi%7D%5E%7B2%7D%5Cright%29%5E%7B2%7D+%5Cleq+%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D%5C%5C

(二)主因子解

可以看做主成分法的修正(就是迭代思想!)。

假如特殊因子方差的初始估计已知,那么令

equation?tex=R-D%3DA+A%5E%7B%5Cprime%7D%3D%3A+R%5E%7B%2A%7D%7B%5Cscriptsize+%7D+%5C%5C

通过求出

equation?tex=+R%5E%7B%2A%7D 的前 m 个特征根,得到 A 的估计,进而得到 D 的估计。反复迭代直到迭代前后 D 的差别很小就停止。

如果初始估计未知,那么一开始我们就用主成分法得到 A 的估计,进而得到 D 的初始估计。

公因子方差初始估计方法:第 i 个公因子方差取为第 i 个变量与其它所有变量的多重相关系数的平方

第 i 个公因子方差取为第 i 个变量与其它所有变量的相关系数绝对值中最大者

直接取为 1,等价于主成分解(将特殊因子方差忽略).

(三)极大似然估计

假设数据 X1,...,Xn 服从 p 元正态,公因子与特殊因子也假定服从正态。

equation?tex=L%28%5Cmu%2C+A%2C+D%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bd%7D+%5Cfrac%7B1%7D%7B%282+%5Cpi%29%5E%7Bp+%2F+2%7D%7C%5CSigma%7C%5E%7B1+%2F+2%7D%7D+%5Cexp+%5Cleft%5B-%5Cfrac%7B1%7D%7B2%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5E%7B%5Cprime%7D+%5Cboldsymbol%7B%5CSigma%7D%5E%7B-%5Cmathbf%7B1%7D%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5Cright%5D%5C%5C

对于均值和协方差阵可以用其极大似然估计替代,利用求极值的方法可得以下方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cwidehat%7B%5Cmu%7D%3D%5Cbar%7BX%7D+%5C%5C+S+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5Cwidehat%7BA%7D%5Cleft%28I%2B%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%5Cright%29+%5C%5C+%5Cwidehat%7BD%7D%3D%5Coperatorname%7Bdiag%7D%5Cleft%28S-%5Cwidehat%7BA%7D+%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D%5Cright%29+%5Cend%7Barray%7D%5Cright.%5C%5C

其中第二个方程如下得到

equation?tex=%5C%5B%5Cbegin%7Barray%7D%7Bl%7D+S+%3D+%5Chat+A%5Chat+A%27+%2B+D%5C%5C++%5CRightarrow+S%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Cleft%28+%7B%5Chat+A%5Chat+A%27+%2B+D%7D+%5Cright%29%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Chat+A%5Cleft%28+%7BI+%2B+%5Chat+A%27%7BD%5E%7B+-+1%7D%7D%5Chat+A%7D+%5Cright%29+%5Cend%7Barray%7D%5C%5C%5C%5D

上面方程不能给出 A 和 D 唯一的估计,会加一个唯一性条件

equation?tex=%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5CLambda%5C%5C

其中

equation?tex=%5CLambda 是对角阵。

实际计算中也是用迭代的思想,给定初值 D 然后利用第二个方程求 A,再用第三个方程求 D,直到稳定。

8.4 方差最大的正交旋转

(一)为什么考虑因子旋转

建立因子模型不仅要得到公共因子,还要能解释这些公共因子的具体含义。

因子载荷矩阵每一行的元素都不大(因为平方和小于1限制),但一般比较平衡,难以解释。现在希望旋转过后的载荷矩阵每一行元素差异大一些。

这篇关于用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232075

相关文章

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,