固定翼飞行器动态逆控制中神经网络自适应补偿器设计(系列五)

本文主要是介绍固定翼飞行器动态逆控制中神经网络自适应补偿器设计(系列五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        机动动作经常伴随着较大的迎角和侧滑角,不同于常规飞行,此时飞机的气动力和动力学特性呈现出较强的非线性和耦合特性。另外由于飞机模型不确定性、时标分离引入的误差和不确定性的影响,导致控制器和模型的对消是不精确的,尤其是在作动器故障、作动器位置和速度饱和、全包线飞行的飞机气动参数变化以及各种扰动作用下,控制器性能将急剧恶化甚至不稳定。因此考虑在逆控制器外环对各种因素导致的逆误差进行在线修正。

        神经网络能够逼近任意的非线性函数、具有良好的学习和推理能力。以其自学习、自适应和非线性映射能力及容错性等优势在解决高度非线性和严重不确定性系统的建模和控制方面具有巨大的潜力,因此尝试用神经网络修正模型的逆误差,下图展示了加入神经网络补偿的动态逆控制框图。

       注:本文的符号定义参照博客F-16飞行器非线性Simulink模型 https://blog.csdn.net/nudt_zrs/article/details/81199010

神经网络补偿控制框图

神经网络结构,设计三层神经网络:

神经网络结构

 

                                           

 

                                                                         (a) 俯仰角速度                                   (b) 滚转角速度

                                                                                       (c) 偏航角速度

                                                                               图3-23 角速度补偿效果

这篇关于固定翼飞行器动态逆控制中神经网络自适应补偿器设计(系列五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224329

相关文章

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Python实现局域网远程控制电脑

《Python实现局域网远程控制电脑》这篇文章主要为大家详细介绍了如何利用Python编写一个工具,可以实现远程控制局域网电脑关机,重启,注销等功能,感兴趣的小伙伴可以参考一下... 目录1.简介2. 运行效果3. 1.0版本相关源码服务端server.py客户端client.py4. 2.0版本相关源码1

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl