7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

本文主要是介绍7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLM不实用,小模型蒸馏才是「现实」的大模型应用路线,全面领先微调技术!土豪请无视。。。

大型语言模型虽然性能优异,可以用零样本或少样本提示解决新任务,但LLM在实际应用部署时却很不实用,内存利用效率低,并且需要大量计算资源。

比如运行一个1750亿参数的语言模型服务至少需要350GB的显存,而目前最先进的语言模型大多已超过5000亿参数量,很多研究团队都没有足够的资源来运行,在现实应用中也无法满足低延迟性能。

也有一些研究使用人工标注数据或使用LLM生成的标签进行蒸馏来训练较小的、任务专用的模型,不过微调和蒸馏需要大量的训练数据才能实现与LLM相当的性能。

为了解决大模型的资源需求问题,华盛顿大学联合谷歌提出了一种新的蒸馏机制「分步蒸馏」(Distilling Step-by-Step),蒸馏后的模型尺寸相比原模型来说非常小,但性能却更好,并且微调和蒸馏过程中所需的训练数据也更少。

图片

论文链接:https://arxiv.org/abs/2305.02301

分布蒸馏机制把LLM中抽取出的预测理由(rationale)作为在多任务框架内训练小模型的额外监督信息。

图片

在4个NLP基准上进行实验后,可以发现:

1. 与微调和蒸馏相比,该机制用更少的训练样本实现了更好的性能;

2. 相比少样本提示LLM,该机制使用更小尺寸的模型实现了更好的性能;

3. 同时降低模型尺寸和数据量也可以实现优于LLM的性能。

实验中,微调后770M的T5模型在基准测试中仅使用80%的可用数据就优于少样本提示的540B的PaLM模型,而标准微调相同的T5模型即使使用100%的数据集也难以匹配。

蒸馏方法

分布蒸馏(distilling step by step)的关键思想是抽取出信息丰富且用自然语言描述的预测理由,即中间推理步骤,可以解释输入问题与模型输出之间的联系,然后再反过来用该数据以更高效的方式训练小模型。

图片

分布蒸馏主要由两个阶段组成:

1. 从LLM中抽取原理(rationale)

研究人员利用少样本思维链(CoT)提示从LLM中提取预测中间步骤。

给定目标任务后,先在LLM输入提示中准备几个样例,其中每个样例由一个三元组组成,包含(输入,原理,输出)。

图片

输入提示后,LLM能够模仿三元组演示以生成其他新问题的预测原理,例如,在常识问答案任务中,给定输入问题:

「Sammy想要去人群所在的地方。他会去哪里?答案选项:(a)人口稠密地区,(B)赛道,(c)沙漠,(d)公寓,(e)路障」

(Sammy wanted to go to where the people are. Where might he go? Answer Choices: (a) populated areas, (b) race track, (c) desert, (d) apartment, (e) roadblock)

通过逐步提炼后,LLM可以给出问题的正确答案「(a)人口稠密地区」,并且提供回答问题的理由「答案必须是一个有很多人的地方,在上述选择中,只有人口稠密的地区有很多人。」

通过在提示中提供与基本原理配对的CoT示例,上下文学习能力可以让LLM为没见过的问题类型生成相应的回答理由。

2. 训练小模型

通过将训练过程构建为多任务问题,将预测理由抽取出来,并将其纳入训练小模型中。

除了标准标签预测任务之外,研究人员还使用新的理由生成任务来训练小模型,使得模型能够学习生成用于预测的中间推理步骤,并且引导模型更好地预测结果标签。

通过在输入提示中加入任务前缀「label」和「rationale」来区分标签预测和理由生成任务。

实验结果

在实验中,研究人员选择5400亿参数量的PaLM模型作为LLM基线,使用T5模型作为任务相关的下游小模型。

然后在三个不同的NLP任务中对四个基准数据集进行了实验:用于自然语言推理的e-SNLI和ANLI、常识问答的CQA,以及用于算术数学应用题的SVAMP.

更少的训练数据

与标准微调相比,分步蒸馏方法使用更少的训练数据即实现了更好的性能。

在e-SNLI数据集上,当使用完整数据集的12.5%时就实现了比标准微调更好的性能,在ANLI、CQA和SVAMP上分别只需要75%、25%和20%的训练数据。

图片

与使用220M T5模型对不同大小的人工标记数据集进行标准微调相比,在所有数据集上,分布蒸馏使用更少的训练示例优于在完整数据集上训练的标准微调。

更小的部署模型尺寸

与少样本CoT提示的LLM相比,分布蒸馏得到的模型尺寸要小得多,但性能却更好。

在e-SNLI数据集上,使用220M的T5模型实现了比540B的PaLM更好的性能;在ANLI上,使用770M的T5模型实现了比540B的PaLM更好的性能,模型尺寸仅为1/700

更小的模型、更少的数据

在模型尺寸和训练数据同时降低的情况下,也实现了超越少样本PaLM的性能。

在ANLI上,使用770M T5模型超越了540B PaLM的性能,只使用了完整数据集的80%

图片

并且可以观察到,即使使用100%的完整数据集,标准微调也无法赶上PaLM的性能,表明分步蒸馏可以同时减少模型尺寸和训练数据量实现超越LLM的性能。

参考资料:

https://blog.research.google/2023/09/distilling-step-by-step-outperforming.html

这篇关于7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/165310

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca