基于蜣螂优化最小二乘支持向量机的数据分类预测Matlab程序DBO-LSSVM 多特征输入多类别输出 含基础程序

本文主要是介绍基于蜣螂优化最小二乘支持向量机的数据分类预测Matlab程序DBO-LSSVM 多特征输入多类别输出 含基础程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于蜣螂优化最小二乘支持向量机的数据分类预测Matlab程序DBO-LSSVM 多特征输入多类别输出 含基础程序

文章目录

  • 一、基本原理
      • DBO(Dung Beetle Optimization)算法原理
      • LSSVM(Least Squares Support Vector Machine)模型原理
      • DBO-LSSVM模型的集成流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

DBO-LSSVM(Dung Beetle Optimization - Least Squares Support Vector Machine)分类预测模型结合了蜣螂优化算法(DBO)和最小二乘支持向量机(LSSVM)来实现高效的分类任务。以下是DBO-LSSVM的详细原理和流程:

DBO(Dung Beetle Optimization)算法原理

蜣螂优化算法(DBO)是一种模仿蜣螂觅食和移动行为的智能优化算法。DBO的基本原理包括:

  1. 蜣螂行为模拟

    • 觅食行为:蜣螂在寻找食物的过程中表现出的一些行为被模拟,用于指导优化过程。蜣螂通过在地面滚动粪球来寻找食物,这种行为被用来设计搜索策略。
    • 滚动行为:蜣螂通过滚动粪球在搜索空间中移动,从而探索和利用不同的解区域。
  2. 算法步骤

    • 初始化:随机生成一组初始解(即蜣螂个体)在解空间中。
    • 适应度评估:计算每个解的适应度,通常通过目标函数进行评估。
    • 位置更新:根据蜣螂的觅食行为和滚动行为更新解的位置,逐步接近最优解。
    • 选择与迭代:选择适应度较好的解作为新的搜索中心,并迭代更新解的位置,直到满足终止条件(如达到最大迭代次数或收敛)。

LSSVM(Least Squares Support Vector Machine)模型原理

最小二乘支持向量机(LSSVM)是一种用于分类和回归的支持向量机的变体。LSSVM的关键特点是将标准的支持向量机(SVM)中的二次规划问题转化为线性方程组,从而简化计算。其主要原理包括:

  1. 模型构建

    • 目标函数:LSSVM通过最小化以下目标函数来训练模型:
      [
      \min_{w, b, \xi} \frac{1}{2}w^T w + \frac{\gamma}{2} \sum_{i=1}^N \xi_i^2
      ]
      其中,(w)是权重向量,(b)是偏置项,(\xi_i)是误差,(\gamma)是正则化参数。
    • 约束条件:模型通过线性约束条件将数据点的标签和模型预测值匹配。
  2. 求解过程

    • 构造线性方程组:将目标函数和约束条件转化为线性方程组,方便求解。
    • 模型训练:通过求解线性方程组来得到最优的模型参数(即权重和偏置)。

DBO-LSSVM模型的集成流程

  1. 初始化DBO

    • 生成初始解:在超参数空间中随机生成一组初始解,代表LSSVM模型的初始超参数设置(如正则化参数(\gamma)和核函数参数等)。
  2. 评估LSSVM性能

    • 训练LSSVM模型:使用当前超参数设置训练LSSVM模型。
    • 性能评估:在验证集上评估LSSVM模型的性能,如分类准确率或其他性能指标。
  3. DBO优化

    • 位置更新:根据DBO的更新机制调整超参数设置,优化LSSVM模型的性能。
    • 适应度评估:计算更新后的超参数设置下的LSSVM模型性能,并将其作为适应度评价标准。
  4. 迭代优化

    • 迭代过程:继续使用DBO算法进行超参数调整和优化。每次迭代都训练新的LSSVM模型,并评估其性能。
    • 终止条件:当满足终止条件(如达到最大迭代次数或性能改进不再显著)时,停止优化过程。
  5. 最终模型训练

    • 训练最终模型:使用优化后的超参数设置重新训练LSSVM模型,得到最终的分类预测模型。
    • 预测与应用:用最终模型对新数据进行分类预测,应用于实际任务中。

总结

DBO-LSSVM模型通过结合蜣螂优化算法(DBO)和最小二乘支持向量机(LSSVM),实现了高效的分类预测。DBO用于优化LSSVM的超参数设置,从而提升分类性能。整个过程包括初始化DBO、训练和评估LSSVM模型、DBO优化超参数、迭代优化过程和最终模型训练。通过这种方法,可以充分发挥DBO算法在超参数优化中的优势,同时利用LSSVM的强大分类能力。

二、实验结果

DBO-LSSVM分类结果
在这里插入图片描述
LSSVM分类结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于基于蜣螂优化最小二乘支持向量机的数据分类预测Matlab程序DBO-LSSVM 多特征输入多类别输出 含基础程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141769

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查