【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营

本文主要是介绍【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

《苹果书》第一章的内容包括
机器学习基础 -> 线性模型 -> 分段线性模型 -> 引入深度学习

这一篇章我们继续后续内容 ~
其中涉及到“激活函数”的作用理解:
除了 开源项目 - 跟李宏毅学深度学习(入门) 之外,
还有 @3Blue1Brown 的神经网络 和 @StatQuest 的深度学习 视频内容辅助。

🍎 🍎

系列文章导航

【深度学习详解】Task1 机器学习基础-线性模型 Datawhale X 李宏毅苹果书 AI夏令营
【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营
【深度学习详解】Task3 实践方法论-分类任务实践 Datawhale X 李宏毅苹果书 AI夏令营

本篇目录导航

  • 前言
      • 系列文章导航
  • 分段线性模型 - 机器学习的三个步骤
    • Step 1:写出目标函数
      • 激活函数
      • 模型计算过程
      • 引入“深度学习”概念
    • Step 2:定义 loss 损失函数
    • Step 3:通过优化器调整超参数 更新参数
      • 参数
      • 超参数
      • 常见的优化器
  • Read more

分段线性模型 - 机器学习的三个步骤

Step 1:写出目标函数

激活函数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

模型计算过程

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

选用 Sigmoid 激活函数 逼近 Hard Sigmoid

在这里插入图片描述

只是考虑一个训练数据

  • i "分段线性模型"的段数 <=> “Sigmoid 函数”的个数

xxx

同时考虑多个训练数据

  • (得到更有灵活性 flexibility 的函数)
    i "分段线性模型"的线段数目 <=> “Sigmoid 函数”的个数
    j "分段线性模型"的训练数据个数

xxx

  • r 代表:“分段线性模型”小括号里面的式子

xxx

  • α 代表:r 的 Sigmoid 函数

xxx

  • y 代表:分段线性模型

在这里插入图片描述

选用 ReLU 激活函数 逼近 Hard Sigmoid

只是考虑一个训练数据

  • 两个 变形的ReLU 合成 一个 Hard Sigmoid

tips:
这里的ReLU函数都不是“标准的”ReLU函数,
因为它们都是变形过的,即
① 通过对自变量x加减b:
实现函数左右平移,
② 通过对ReLU函数乘上c:
改变斜线陡峭程度
还有可能将斜线正负翻转 。
在这里插入图片描述
我们可代入具体值具体例子理解:
上面的变形Relu斜线延申y值分别是
11、12、13……
下面的变形Relu斜线对应y值分别是
-1、-2、-3……
那么用这两个Relu斜线部分合成就是
Hard Sigmoid 函数第三段(平的)
即:11-1 =12-2 =13-3 =……=10

可以观看这个视频可视化理解
@StatQuest 深度学习:【官方双语】一个例子彻底理解ReLU激活函数
该视频的例子:两个变形的ReLU
-> 分段线性模型
《苹果书》:两个变形的ReLU
-> Hard Sigmoid
-> 分段线性模型

同时考虑多个训练数据

  • (得到更有灵活性 flexibility 的函数)
    2i "分段线性模型"的线段数目 <=> “ReLU 函数”的个数*2
    j "分段线性模型"的训练数据个数

xxx

嵌套多层 ReLU 激活函数 逼近 Hard Sigmoid

只是考虑一个训练数据

同时考虑多个训练数据

  • (得到更有灵活性 flexibility 的函数)
    2i "分段线性模型"的线段数目 <=> “ReLU 函数”的个数*2
    j "分段线性模型"的训练数据个数

在这里插入图片描述

引入“深度学习”概念

引入“深度学习”概念

(旧说法)

  • Neuron 神经元
    Neural Network 神经网络

(新说法)

  • hidden layer 隐藏层
    Deep Learning 深度学习

在这里插入图片描述

Step 2:定义 loss 损失函数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

Step 3:通过优化器调整超参数 更新参数

参数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

参数

所有未知参数“拼”成一个向量 θ

  • σ 激活函数
    w weight 权重参数
    b bias 偏置参数(修正)
    c 常数参数
    b 常数参数

在这里插入图片描述

超参数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

常见的优化器

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

梯度下降的步骤

定义代价函数

  • 代价函数——误差表面(error surface):
    尝试不同的权重参数,计算它的损失 L

在这里插入图片描述

选取初始点

  • 首先在代价函数上随机选取一个初始点。

更新 参数 θ
(以权重参数 w 为例)

  • 步伐大小
    接下来计算在这个点上,权重参数 w 对损失 L 的微分
    计算梯度,即代价函数的导数、微分、陡峭程度)。
    调整的步伐大小是 学习率 η 乘上微分的结果。

  • 步伐方向
    计算在这一个点上的代价函数的切线斜率
    如果斜率大于0,则将w调小;反之,则将w调大。

  • 更新 参数 θ

上角标:迭代更新的次数
下角标:未知参数的序数在这里插入图片描述

  • 一个回合(epoch)内
    把 N 笔数据(即需要迭代更新的总次数)
    随机分成一个一个的批次(batch)

相当于分担了需要迭代更新的总次数:
1个epoch的更新次数 = N / B
N 需要迭代更新的总次数
B 批次的大小在这里插入图片描述

反复迭代计算

  • 输入更新后的参数 θ ,
    再次计算微分,再次更新参数,
    反复迭代更新下去找到代价函数最低点为止。
    (或者是直到不想做为止)

Read more

  • 李宏毅深度学习教程 LeeDL-Tutorial(苹果书)
    https://github.com/datawhalechina/leedl-tutorial
    李宏毅《机器学习/深度学习》2021课程(视频教程 24 h 46 min)
    https://www.bilibili.com/video/BV1JA411c7VT/

  • @3Blue1Brown Topics: Neural Networks
    https://www.3blue1brown.com/topics/neural-networks

  • @StatQuest 深度学习
    【官方双语】一个例子彻底理解ReLU激活函数
    https://www.bilibili.com/video/BV15x4y1U7T3/

这篇关于【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139873

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.