LLaMA-Factory仓基础功能架构及NPU/GPU环境实战演练

2024-09-05 09:52

本文主要是介绍LLaMA-Factory仓基础功能架构及NPU/GPU环境实战演练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLaMA-Factory

基础篇

LLaMA-Factory简介

在这里插入图片描述

LLaMA-Factory是一个开源的大规模语言模型微调框架,设计用于简化大模型的训练过程。它提供了一个统一的平台,支持多种大模型的微调,包括LLaMA、BLOOM、Mistral等,旨在帮助用户快速适应和调整这些模型以适应特定的应用场景。LLaMA-Factory通过提供一套完整的工具和接口,使用户能够轻松地对预训练的模型进行定制化的训练和调整,包括(增量)预训练、指令监督微调、奖励模型训练、PPO训练、DPO训练和ORPO训练
等多种训练方法。此外,它还支持多种精度调整,如32比特全参数微调、16比特冻结微调、16比特LoRA微调和基于AQLM/AWQ/GPTQ/LLM.int8的2/4/8比特QLoRA微调,以及一系列先进算法和实用技巧,如GaLore、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ和Agent微调等。

LLaMA-Factory的特色在于它提供了一个内置的Web UI,使用户能够灵活定制100多个LLMs的微调,几乎不需要编写代码。这个框架不仅简化了大模型微调的过程,使得即使是技术门外汉也能通过学习LLaMA-Factory后,快速训练出自己需要的模型,同时也为想要了解微调大模型技术的技术人员提供了一个快速理解模型微调相关概念的平台。通过LLaMA-Factory,企业可以更好地利用大模型技术,实现真正的大模型应用。此外,LLaMA-Factory还支持通过命令行或Web界面进行操作,进一步降低了使用门槛。

整体架构:

在这里插入图片描述

调优框架:

在这里插入图片描述

项目特点:

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
  • 多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
  • 先进算法:GaLore、BAdam、Adam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、Liger Kernel、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

支持模型:

模型名模型大小Template
Baichuan 27B/13Bbaichuan2
BLOOM/BLOOMZ560M/1.1B/1.7B/3B/7.1B/176B-
ChatGLM36Bchatglm3
Command R35B/104Bcohere
DeepSeek (Code/MoE)7B/16B/67B/236Bdeepseek
Falcon7B/11B/40B/180Bfalcon
Gemma/Gemma 2/CodeGemma2B/7B/9B/27Bgemma
GLM-49Bglm4
InternLM2/InternLM2.57B/20Bintern2
Llama7B/13B/33B/65B-
Llama 27B/13B/70Bllama2
Llama 3/Llama 3.18B/70Bllama3
LLaVA-1.57B/13Bllava
MiniCPM1B/2Bcpm
Mistral/Mixtral7B/8x7B/8x22Bmistral
OLMo1B/7B-
PaliGemma3Bpaligemma
Phi-1.5/Phi-21.3B/2.7B-
Phi-34B/7B/14Bphi
Qwen/Qwen1.5/Qwen2 (Code/Math/MoE)0.5B/1.5B/4B/7B/14B/32B/72B/110Bqwen
Qwen2-VL2B/7Bqwen2_vl
StarCoder 23B/7B/15B-
XVERSE7B/13B/65Bxverse
Yi/Yi-1.56B/9B/34Byi
Yi-VL6B/34Byi_vl
Yuan 22B/51B/102Byuan

提供的训练方法:

方法全参数训练部分参数训练LoRAQLoRA
预训练
指令监督微调
奖励模型训练
PPO 训练
DPO 训练
KTO 训练
ORPO 训练
SimPO 训练

支持的数据集:

  1. 预训练数据集:
    • Wiki Demo (en)
    • RefinedWeb (en)
    • RedPajama V2 (en)
    • Wikipedia (en)
    • Wikipedia (zh)
    • Pile (en)
    • SkyPile (zh)
    • FineWeb (en)
    • FineWeb-Edu (en)
    • The Stack (en)
    • StarCoder (en)
  2. 指令微调数据集
    • Identity (en&zh)
    • Stanford Alpaca (en)
    • Stanford Alpaca (zh)
    • Alpaca GPT4 (en&zh)
    • Glaive Function Calling V2 (en&zh)
    • LIMA (en)
    • Guanaco Dataset (multilingual)
    • BELLE 2M (zh)
    • BELLE 1M (zh)
    • BELLE 0.5M (zh)
    • BELLE Dialogue 0.4M (zh)
    • BELLE School Math 0.25M (zh)
    • BELLE Multiturn Chat 0.8M (zh)
    • UltraChat (en)
    • OpenPlatypus (en)
    • CodeAlpaca 20k (en)
    • Alpaca CoT (multilingual)
    • OpenOrca (en)
    • SlimOrca (en)
    • MathInstruct (en)
    • Firefly 1.1M (zh)
    • Wiki QA (en)
    • Web QA (zh)
    • WebNovel (zh)
    • Nectar (en)
    • deepctrl (en&zh)
    • Advertise Generating (zh)
    • ShareGPT Hyperfiltered (en)
    • ShareGPT4 (en&zh)
    • UltraChat 200k (en)
    • AgentInstruct (en)
    • LMSYS Chat 1M (en)
    • Evol Instruct V2 (en)
    • Cosmopedia (en)
    • STEM (zh)
    • Ruozhiba (zh)
    • Neo-sft (zh)
    • WebInstructSub (en)
    • Magpie-Pro-300K-Filtered (en)
    • Magpie-ultra-v0.1 (en)
    • LLaVA mixed (en&zh)
    • Pokemon-gpt4o-captions
    • Open Assistant (de)
    • Dolly 15k (de)
    • Alpaca GPT4 (de)
    • OpenSchnabeltier (de)
    • Evol Instruct (de)
    • Dolphin (de)
    • Booksum (de)
    • Airoboros (de)
    • Ultrachat (de)
  3. 偏好数据集
    • DPO mixed (en&zh)
    • UltraFeedback (en)
    • RLHF-V (en)
    • Orca DPO Pairs (en)
    • HH-RLHF (en)
    • Nectar (en)
    • Orca DPO (de)
    • KTO mixed (en)

实战篇

昇腾NPU环境测试

前置条件:已安装NPU卡驱动/CANN Toolkit/CANN kernels,并设置好环境变量

1.安装LLaMA-Factory
##克隆LLaMA-Factory代码仓:
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
##NPU环境安装
cd LLaMA-Factory
pip install -e ".[torch-npu,metrics]"
2.验证LLaMA-Factory可用性:
llamafactory-cli help

在这里插入图片描述

根据报错提示,镜像中默认安装了vllm,执行llamafactory-cli会默认调用vllm这个库,昇腾NPU不支持vllm库,卸载vllm解决

pip uninstall vllm

在这里插入图片描述

3.使用LLaMA-Factory仓进行qwen2-vl-7b微调训练
3.1.下载模型权重
yum install git-lfs
git clone https://www.modelscope.cn/qwen/qwen2-vl-7b-instruct.git
3.2使用LLaMA-Factory 提供的数据集进行测试

在这里插入图片描述

3.3修改启动脚本:
vim examples/train_lora/qwen2vl_lora_dpo.yaml

在这里插入图片描述

3.4指定运算设备
export ASCEND_RT_VISIBLE_DEVICES=0,1  ###指定两张NPU卡进行训练
3.5启动训练任务
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml

报keyerror“qwen2_vl”错误

在这里插入图片描述

根据提示报错原因为pip源中transformers版本问题不适配,需要从github上拉取安装最新的transformers

3.6安装最新版本transformers
pip install git+https://github.com/huggingface/transformers accelerate
#一次可能失败,拉取不下来,多尝试几次;
#上述方法不行,就使用以下方式安装:
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e

重新拉起训练任务解决

在这里插入图片描述

loss收敛:

在这里插入图片描述


GPU环境测试

前置条件:已安装GPU卡驱动/CUDA/cudnn等基础环境,并设置好环境变量

1.安装LLaMA-Factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
2.验证LLaMA-Factory可用性:
llamafactory-cli help

在这里插入图片描述

3.使用LLaMA-Factory仓进行qwen2-vl-7b微调训练
3.1.下载模型权重
yum install git-lfs
git clone https://www.modelscope.cn/qwen/qwen2-vl-7b-instruct.git
3.2使用LLaMA-Factory 提供的数据集进行测试

在这里插入图片描述

3.3修改启动脚本:
vim examples/train_lora/qwen2vl_lora_dpo.yaml

在这里插入图片描述

3.4安装最新版本transformers
pip install git+https://github.com/huggingface/transformers accelerate
#一次可能失败,拉取不下来,多尝试几次;
#上述方法不行,就使用以下方式安装:
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e
3.5启动训练任务
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml

报端口错误

在这里插入图片描述

指定端口号解决:

export MASTER_PORT=45123

在这里插入图片描述

loss曲线收敛:
在这里插入图片描述


日常学习总结

这篇关于LLaMA-Factory仓基础功能架构及NPU/GPU环境实战演练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138627

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件