keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据

本文主要是介绍keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要是keras的示例都是图片分类。而真正的论文代码,又太大了,不适合初学者(比如我)来学习。

所以我查找了一些资料。我在google 上捞的。

其中有个教程让人感觉很好.更完整的教程。另一个教程。

大概就是说,你的输入ground truth label需要是(width*height,class number),然后网络最后需要加个sigmoid,后面用binary_crossentrophy 损失函数。

在说白点就是图片原始标签可能是640,480,1.这样的,你先转成onehot 640,480,13(比如我有13类,一张图片有了一个三维的标注,真是fancy),然后再转成640*480,13这个二维的标注,就是保持深度,图片拉成向量。

然后最后的网络,最后一层的激活函数,要用sigmoid配binary_crossentrophy

或者是softmax 配catahorical_crossentrophy

官网说catagotical_cross rntrophy:

注意: 当使用 categorical_crossentropy 损失时,你的目标值应该是分类格式 (即,如果你有 10 个类,每个样本的目标值应该是一个 10 维的向量,这个向量除了表示类别的那个索引为 1,其他均为 0)。 为了将 整数目标值 转换为 分类目标值,你可以使用 Keras 实用函数 to_categorical
 

from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_labels, num_classes=None)

所以,我贴一下我的代码。这个代码最终的输出是原图的1/16大小,毕竟我们只是为了说明代码,而不是真的去发paper,越简单越好。

from __future__ import print_function
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os
import keras
import PIL
from PIL import Image
from keras import Model, Input, optimizers
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
from keras.layers import Conv2D,Lambda,Reshape
from keras.preprocessing.image import ImageDataGenerator, load_img#数据预处理
#下面将我的label从2284*30*40*1 转成2284*1200*14的onehot编码
#2284是图片数量
#14是类别数量
#img和lab是你的图片和标注图片。
#img大小是2284*480*640*3
#lab是2284*480*640
#trainval_list是你的训练和validation数据序号列表,因为2284张图片包含了900多张测试图片,我需要筛一下
img = img./255
img_trainval = img[trainval_list, :, :, :]
mini_lab = lab[:,::16,::16]sum = np.zeros(shape=(2284, 1200, 14))
for i in range(2284):pic_lab = mini_lab[i, :, :]pic_flatten = np.reshape(pic_lab, (1, 1200))pic_onehot = keras.utils.to_categorical(pic_flatten, 14)sum[i] = pic_onehot
lab_trainval = sum[trainval_list, :, :]#网络结构是非常简单的
os.environ['CUDA_VISIBLE_DEVICES']='0'
resnet_model = resnet50.ResNet50(weights = 'imagenet', include_top=False,input_shape = (480,640,3))
layer_name = 'activation_40'
res16 = Model(inputs=resnet_model.input, outputs=resnet_model.get_layer(layer_name).output)
input_real = Input(shape=(480,640,3))
sgd = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
x = res16(input_real)
x = Conv2D(14, (1, 1), activation='relu')(x)
sig_out = Conv2D(14,(1,1),activation = 'sigmoid')(x)
out_reshape = Reshape((1200,14))(sig_out)#配置训练参数
model_simple1 = Model(inputs=input_real, outputs=out_reshape)
model_simple1.summary()
model_simple1.compile(loss="binary_crossentropy", optimizer=sgd, metrics=['accuracy','categorical_accuracy'])
model_simple1.fit(x=img_trainval, y=lab_trainval, epochs=200, shuffle=True, batch_size=2)

训练过程:这里必须说明的是,我把未标注类也加入训练了,所以其实这个代码对于我的数据库还是需要修改的。慢慢来。先解决3D数据的问题好吧。

 

网络结构忘给了:

 warnings.warn('The output shape of `ResNet50(include_top=False)` '
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         (None, 480, 640, 3)       0         
_________________________________________________________________
model_1 (Model)              (None, 30, 40, 1024)      8589184   
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 30, 40, 14)        14350     
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 30, 40, 14)        210       
_________________________________________________________________
reshape_1 (Reshape)          (None, 1200, 14)          0         
=================================================================
Total params: 8,603,744
Trainable params: 8,573,152
Non-trainable params: 30,592
_________________________________________________________________

 

这篇关于keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128439

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u