keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据

本文主要是介绍keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要是keras的示例都是图片分类。而真正的论文代码,又太大了,不适合初学者(比如我)来学习。

所以我查找了一些资料。我在google 上捞的。

其中有个教程让人感觉很好.更完整的教程。另一个教程。

大概就是说,你的输入ground truth label需要是(width*height,class number),然后网络最后需要加个sigmoid,后面用binary_crossentrophy 损失函数。

在说白点就是图片原始标签可能是640,480,1.这样的,你先转成onehot 640,480,13(比如我有13类,一张图片有了一个三维的标注,真是fancy),然后再转成640*480,13这个二维的标注,就是保持深度,图片拉成向量。

然后最后的网络,最后一层的激活函数,要用sigmoid配binary_crossentrophy

或者是softmax 配catahorical_crossentrophy

官网说catagotical_cross rntrophy:

注意: 当使用 categorical_crossentropy 损失时,你的目标值应该是分类格式 (即,如果你有 10 个类,每个样本的目标值应该是一个 10 维的向量,这个向量除了表示类别的那个索引为 1,其他均为 0)。 为了将 整数目标值 转换为 分类目标值,你可以使用 Keras 实用函数 to_categorical
 

from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_labels, num_classes=None)

所以,我贴一下我的代码。这个代码最终的输出是原图的1/16大小,毕竟我们只是为了说明代码,而不是真的去发paper,越简单越好。

from __future__ import print_function
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os
import keras
import PIL
from PIL import Image
from keras import Model, Input, optimizers
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
from keras.layers import Conv2D,Lambda,Reshape
from keras.preprocessing.image import ImageDataGenerator, load_img#数据预处理
#下面将我的label从2284*30*40*1 转成2284*1200*14的onehot编码
#2284是图片数量
#14是类别数量
#img和lab是你的图片和标注图片。
#img大小是2284*480*640*3
#lab是2284*480*640
#trainval_list是你的训练和validation数据序号列表,因为2284张图片包含了900多张测试图片,我需要筛一下
img = img./255
img_trainval = img[trainval_list, :, :, :]
mini_lab = lab[:,::16,::16]sum = np.zeros(shape=(2284, 1200, 14))
for i in range(2284):pic_lab = mini_lab[i, :, :]pic_flatten = np.reshape(pic_lab, (1, 1200))pic_onehot = keras.utils.to_categorical(pic_flatten, 14)sum[i] = pic_onehot
lab_trainval = sum[trainval_list, :, :]#网络结构是非常简单的
os.environ['CUDA_VISIBLE_DEVICES']='0'
resnet_model = resnet50.ResNet50(weights = 'imagenet', include_top=False,input_shape = (480,640,3))
layer_name = 'activation_40'
res16 = Model(inputs=resnet_model.input, outputs=resnet_model.get_layer(layer_name).output)
input_real = Input(shape=(480,640,3))
sgd = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
x = res16(input_real)
x = Conv2D(14, (1, 1), activation='relu')(x)
sig_out = Conv2D(14,(1,1),activation = 'sigmoid')(x)
out_reshape = Reshape((1200,14))(sig_out)#配置训练参数
model_simple1 = Model(inputs=input_real, outputs=out_reshape)
model_simple1.summary()
model_simple1.compile(loss="binary_crossentropy", optimizer=sgd, metrics=['accuracy','categorical_accuracy'])
model_simple1.fit(x=img_trainval, y=lab_trainval, epochs=200, shuffle=True, batch_size=2)

训练过程:这里必须说明的是,我把未标注类也加入训练了,所以其实这个代码对于我的数据库还是需要修改的。慢慢来。先解决3D数据的问题好吧。

 

网络结构忘给了:

 warnings.warn('The output shape of `ResNet50(include_top=False)` '
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         (None, 480, 640, 3)       0         
_________________________________________________________________
model_1 (Model)              (None, 30, 40, 1024)      8589184   
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 30, 40, 14)        14350     
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 30, 40, 14)        210       
_________________________________________________________________
reshape_1 (Reshape)          (None, 1200, 14)          0         
=================================================================
Total params: 8,603,744
Trainable params: 8,573,152
Non-trainable params: 30,592
_________________________________________________________________

 

这篇关于keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128439

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英