回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

本文主要是介绍回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

文章目录

  • 一、基本原理
      • 1. 数据预处理
      • 2. PSO优化(粒子群优化)
      • 3. KELM训练(核极限学习机)
      • 4. AdaBoost集成
      • 5. 模型评估和优化
      • 6. 预测
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

一、基本原理

PSO-KELM-Adaboost回归预测是一种将粒子群优化(PSO)、核极限学习机(KELM)和自适应提升(AdaBoost)结合在一起的回归方法。下面是详细的原理和流程:

1. 数据预处理

  • 数据清洗:去除缺失值和异常值。
  • 数据归一化:将数据标准化,以便模型训练更加稳定。

2. PSO优化(粒子群优化)

  • 初始化粒子群:定义粒子的位置和速度,位置表示KELM模型的超参数(如核函数参数、正则化参数),速度决定粒子的移动。
  • 定义适应度函数:通常选择均方误差(MSE)作为适应度函数,评价KELM模型在特定超参数下的性能。
  • 更新粒子位置
    • 速度更新:根据粒子的历史最佳位置和群体最佳位置更新速度。
    • 位置更新:根据更新后的速度调整粒子的位置。
  • 迭代优化:不断迭代更新粒子位置,直到找到最优的超参数组合。

3. KELM训练(核极限学习机)

  • 定义KELM模型
    • 选择核函数:常用的核函数包括径向基函数(RBF)、多项式核等。
    • 设定超参数:包括核函数参数和正则化参数,这些参数由PSO优化得到。
  • 训练KELM模型
    • 计算隐层权重:使用随机生成的权重和固定的激活函数计算隐层输出。
    • 优化输出权重:通过最小化回归误差来求解输出层权重。

4. AdaBoost集成

  • 训练基础KELM回归模型
    • 初始化权重:为每个训练样本分配初始权重。
    • 训练KELM:使用当前样本权重训练KELM模型。
    • 计算模型误差:评估模型在训练集上的性能,计算加权误差。
    • 更新样本权重:根据误差调整样本权重,使得下一轮训练更加关注被误分类的样本。
  • 构建强回归模型
    • 迭代训练:重复训练多个KELM模型,每次使用更新的样本权重。
    • 组合模型:将多个基础KELM回归模型结合起来,形成最终的强回归模型。

5. 模型评估和优化

  • 交叉验证:使用交叉验证技术评估集成模型的性能,确保模型的泛化能力。
  • 调整超参数:根据交叉验证的结果,进一步优化PSO、KELM和AdaBoost的参数。

6. 预测

  • 特征提取:使用训练好的KELM模型对新数据进行预测。
  • 应用AdaBoost模型:将多个KELM回归模型的预测结果加权组合,得到最终预测结果。

总结

PSO-KELM-Adaboost回归预测方法通过结合粒子群优化、核极限学习机和自适应提升技术,提供了一种强大的回归预测工具。PSO用于优化KELM模型的超参数,KELM用于建模回归关系,而AdaBoost则通过集成多个KELM模型来提高预测的准确性和鲁棒性。每一步都为提升模型的性能和泛化能力做出贡献。

二、实验结果

PSO-KELM-Adaboost回归预测
在这里插入图片描述

三、核心代码

%%  读取数据
res = xlsread('数据集.xlsx');
rng(0,'twister');                            % 随机种子%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = 2;                                            % 优化参数个数 正则化系数 C 和 RBF核函数参数宽度
lb  = [0.1, 1];                                     % 优化参数目标下限
ub  = [50, 50];                                     % 优化参数目标上限
pop = 10;                                           % 种群数量
Max_iteration = 30;                                 % 最大迭代次数   %% KELM核函数设置
Kernel_type = 'rbf';

四、代码获取

私信即可 55米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124781

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Python结合Free Spire.PDF for Python实现PDF页面旋转

《Python结合FreeSpire.PDFforPython实现PDF页面旋转》在日常办公或文档处理中,我们经常会遇到PDF页面方向错误的问题,本文将分享如何用Python结合FreeSpir... 目录基础实现:单页PDF精准旋转完整代码代码解析进阶操作:覆盖多场景旋转需求1. 旋转指定角度(90/27

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什