回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

本文主要是介绍回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

文章目录

  • 一、基本原理
      • 1. 数据预处理
      • 2. PSO优化(粒子群优化)
      • 3. KELM训练(核极限学习机)
      • 4. AdaBoost集成
      • 5. 模型评估和优化
      • 6. 预测
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

一、基本原理

PSO-KELM-Adaboost回归预测是一种将粒子群优化(PSO)、核极限学习机(KELM)和自适应提升(AdaBoost)结合在一起的回归方法。下面是详细的原理和流程:

1. 数据预处理

  • 数据清洗:去除缺失值和异常值。
  • 数据归一化:将数据标准化,以便模型训练更加稳定。

2. PSO优化(粒子群优化)

  • 初始化粒子群:定义粒子的位置和速度,位置表示KELM模型的超参数(如核函数参数、正则化参数),速度决定粒子的移动。
  • 定义适应度函数:通常选择均方误差(MSE)作为适应度函数,评价KELM模型在特定超参数下的性能。
  • 更新粒子位置
    • 速度更新:根据粒子的历史最佳位置和群体最佳位置更新速度。
    • 位置更新:根据更新后的速度调整粒子的位置。
  • 迭代优化:不断迭代更新粒子位置,直到找到最优的超参数组合。

3. KELM训练(核极限学习机)

  • 定义KELM模型
    • 选择核函数:常用的核函数包括径向基函数(RBF)、多项式核等。
    • 设定超参数:包括核函数参数和正则化参数,这些参数由PSO优化得到。
  • 训练KELM模型
    • 计算隐层权重:使用随机生成的权重和固定的激活函数计算隐层输出。
    • 优化输出权重:通过最小化回归误差来求解输出层权重。

4. AdaBoost集成

  • 训练基础KELM回归模型
    • 初始化权重:为每个训练样本分配初始权重。
    • 训练KELM:使用当前样本权重训练KELM模型。
    • 计算模型误差:评估模型在训练集上的性能,计算加权误差。
    • 更新样本权重:根据误差调整样本权重,使得下一轮训练更加关注被误分类的样本。
  • 构建强回归模型
    • 迭代训练:重复训练多个KELM模型,每次使用更新的样本权重。
    • 组合模型:将多个基础KELM回归模型结合起来,形成最终的强回归模型。

5. 模型评估和优化

  • 交叉验证:使用交叉验证技术评估集成模型的性能,确保模型的泛化能力。
  • 调整超参数:根据交叉验证的结果,进一步优化PSO、KELM和AdaBoost的参数。

6. 预测

  • 特征提取:使用训练好的KELM模型对新数据进行预测。
  • 应用AdaBoost模型:将多个KELM回归模型的预测结果加权组合,得到最终预测结果。

总结

PSO-KELM-Adaboost回归预测方法通过结合粒子群优化、核极限学习机和自适应提升技术,提供了一种强大的回归预测工具。PSO用于优化KELM模型的超参数,KELM用于建模回归关系,而AdaBoost则通过集成多个KELM模型来提高预测的准确性和鲁棒性。每一步都为提升模型的性能和泛化能力做出贡献。

二、实验结果

PSO-KELM-Adaboost回归预测
在这里插入图片描述

三、核心代码

%%  读取数据
res = xlsread('数据集.xlsx');
rng(0,'twister');                            % 随机种子%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = 2;                                            % 优化参数个数 正则化系数 C 和 RBF核函数参数宽度
lb  = [0.1, 1];                                     % 优化参数目标下限
ub  = [50, 50];                                     % 优化参数目标上限
pop = 10;                                           % 种群数量
Max_iteration = 30;                                 % 最大迭代次数   %% KELM核函数设置
Kernel_type = 'rbf';

四、代码获取

私信即可 55米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124781

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档