yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制

本文主要是介绍yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在计算机视觉和深度学习项目中,数据增强是一种常用的技术,通过对原始图像进行多种变换,可以增加数据集的多样性,从而提高模型的泛化能力。本文将介绍如何使用 Python 和 OpenCV 实现图像的亮度增强,并将增强后的图像与对应的注释文件批量复制到新目录中。

项目背景

假设你有一个数据集,包含若干图像及其对应的 XML 注释文件和标签文件。在模型训练前,你希望对这些图像进行亮度增强,并生成新的图像及其对应的注释文件和标签文件。本教程将指导你如何编写一个 Python 脚本,实现此功能。

train目录如下:

在这里插入图片描述
生成的augmented_data如下:

在这里插入图片描述

代码实现

1. 图像亮度调整函数

首先,我们需要编写一个函数,来调整图像的亮度。此处我们使用 HSV 色彩空间的 V(亮度)通道进行调整。

import cv2
import numpy as npdef adjust_brightness(im, vgain):hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)hue, sat, val = cv2.split(hsv)val = np.clip(val * vgain, 0, 255).astype(np.uint8)enhanced_hsv = cv2.merge((hue, sat, val))brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)return brightened_img

2. 创建输出目录

在进行文件操作前,我们需要为增强后的文件创建一个新的输出目录。

import osdef create_output_folders(base_folder):new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")output_folders = {"images": os.path.join(new_base_folder, "images"),"annotations": os.path.join(new_base_folder, "annotations"),"labels": os.path.join(new_base_folder, "labels")}for folder in output_folders.values():os.makedirs(folder, exist_ok=True)return output_folders

3. 文件复制函数

为了复制原始图像和对应的注释文件,我们编写一个通用的文件复制函数。该函数可以根据需要在文件名后添加后缀。

import shutildef copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):base_filename, ext = os.path.splitext(os.path.basename(src_path))if preserve_ext:new_filename = f"{base_filename}{filename_suffix}{ext}"else:new_filename = f"{base_filename}{filename_suffix}"dst_path = os.path.join(dst_folder, new_filename)shutil.copy(src_path, dst_path)return dst_path

4. 图像增强与文件复制

该函数实现了图像的亮度增强,同时将增强后的图像和对应的注释文件保存到新的目录中。

def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5)):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),"annotations": os.path.join(base_folder, "annotations", f"{base_filename}.xml"),"labels": os.path.join(base_folder, "labels", f"{base_filename}.txt")}# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始文件for key in file_paths:copy_file(file_paths[key], output_folders[key], "", preserve_ext=True)# 确保增强结果不重复unique_vgains = set()while len(unique_vgains) < num_augmentations:vgain = np.random.uniform(*vgain_range)if vgain not in unique_vgains:unique_vgains.add(vgain)brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)for key in file_paths:filename_suffix = f"_enhanced_{len(unique_vgains)}"output_path = copy_file(file_paths[key], output_folders[key], filename_suffix, preserve_ext=True)if key == "images":cv2.imwrite(output_path, brightened_img)print(f"Saved: {output_path}")else:print(f"Copied {key}: {output_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

5. 处理整个目录

最后,我们编写一个函数,用于处理指定目录中的所有图像文件,并对每张图像进行增强。

def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5)):images_folder = os.path.join(base_folder, "images")for image_filename in os.listdir(images_folder):if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range)

6. 运行脚本

你可以通过以下代码来运行整个图像增强与文件复制过程:

# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_10_29\train"
process_all_images_in_folder(base_folder)

7.整体代码

import cv2
import numpy as np
import os
import shutildef adjust_brightness(im, vgain):hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)hue, sat, val = cv2.split(hsv)val = np.clip(val * vgain, 0, 255).astype(np.uint8)enhanced_hsv = cv2.merge((hue, sat, val))brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)return brightened_imgdef create_output_folders(base_folder):new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")output_folders = {"images": os.path.join(new_base_folder, "images"),"annotations": os.path.join(new_base_folder, "annotations"),"labels": os.path.join(new_base_folder, "labels")}for folder in output_folders.values():os.makedirs(folder, exist_ok=True)return output_foldersdef copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):base_filename, ext = os.path.splitext(os.path.basename(src_path))if preserve_ext:new_filename = f"{base_filename}{filename_suffix}{ext}"else:new_filename = f"{base_filename}{filename_suffix}"dst_path = os.path.join(dst_folder, new_filename)shutil.copy(src_path, dst_path)return dst_pathdef augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5)):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),"annotations": os.path.join(base_folder, "annotations", f"{base_filename}.xml"),"labels": os.path.join(base_folder, "labels", f"{base_filename}.txt")}# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始文件for key in file_paths:copy_file(file_paths[key], output_folders[key], "", preserve_ext=True)# 确保增强结果不重复unique_vgains = set()while len(unique_vgains) < num_augmentations:vgain = np.random.uniform(*vgain_range)if vgain not in unique_vgains:unique_vgains.add(vgain)brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)for key in file_paths:filename_suffix = f"_enhanced_{len(unique_vgains)}"output_path = copy_file(file_paths[key], output_folders[key], filename_suffix, preserve_ext=True)if key == "images":cv2.imwrite(output_path, brightened_img)print(f"Saved: {output_path}")else:print(f"Copied {key}: {output_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5)):images_folder = os.path.join(base_folder, "images")for image_filename in os.listdir(images_folder):if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range)# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_10_29\train"
process_all_images_in_folder(base_folder)

这篇关于yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124530

相关文章

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定