【3D目标检测】MMdetection3d——nuScenes数据集训练BEVFusion

2024-08-31 16:12

本文主要是介绍【3D目标检测】MMdetection3d——nuScenes数据集训练BEVFusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

MMdetection3d:【3D目标检测】环境搭建(OpenPCDet、MMdetection3d)

MMdetection3d源码地址:https://github.com/open-mmlab/mmdetection3d/tree/main?tab=readme-ov-file

IS-Fusion源码地址:https://github.com/yinjunbo/IS-Fusion

1 MMdetection3d环境搭建

官网教程链接🔗:https://mmdetection3d.readthedocs.io/en/latest/get_started.html
先准备好MMdetection3d的环境:【3D目标检测】环境搭建(OpenPCDet、MMdetection3d)
**直接抄作业安装如下:**

# 0 安装依赖
sudo apt install wget git g++ cmake ffmpeg libsm6 libxext6# 1 创建虚拟环境
conda create -n mmdet3d python=3.8# 2 激活虚拟环境
conda activate mmdet3d# 3 安装torch
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html# 4 配置安装mmdetection3d
pip install openmim
# 下载的是mmdet3d是v1.3.0版本
git clone https://github.com/open-mmlab/mmdetection3d.git -b v1.3.0
cd mmdetection3d
# 使用mim可以自动配置mmcv,mmdet,mmengine
mim install -v -e .
# "-v" 指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。# 5 安装 cumm-cuxxx spconv-cuxxx
pip install cumm-cu113
pip install spconv-cu113# 6 配置 mmdet3d中的BEVFusion
python projects/BEVFusion/setup.py develop
# 或者运行下面2句
# cd projects/BEVFusion
# pip install -v -e .# 7 安装及查看相关库的版本
## 7.1 openlab相关库安装
mim install mmcv==2.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmdet==3.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmdet3d==1.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmengine==0.10.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
## 7.2 openlab相关库版本
mim list
# 终端显示如下
mmcv       2.1.0      https://github.com/open-mmlab/mmcv
mmdet      3.2.0      https://github.com/open-mmlab/mmdetection
mmdet3d    1.3.0      /root/share/code/mmdetection3d
mmengine   0.10.1     https://github.com/open-mmlab/mmengine## 7.2 torch相关库版本
pip list | grep torch
# 终端显示如下
torch                     1.10.0+cu113
torchaudio                0.10.0+rocm4.1
torchvision               0.11.0+cu113

2 nuScenes数据集准备

数据集下载参考🔗【3D目标检测】OpenPCDet——nuScenes数据集训练BEVFusion/TransFusion_L
可以使用软连接将数据集链接到mmdetection3d/data文件夹下

ln -s /opt/data/DATASETS/nuscenes /opt/data/CNN_3D/mmdetection3d/data
├── data
│   ├── nuscenes
│   │   │── v1.0-trainval (or v1.0-mini if you use mini)
│   │   │   │── samples
│   │   │   │── sweeps
│   │   │   │── maps
│   │   │   │── v1.0-trainval 

重要!!!!!!
如果是nuscenes-mini数据集,需要修改文件
mmdet3d/datasets/nuscenes_dataset.py文件中的v1.0-trainval改成v1.0-mini即可
nuscenes-full无需修改,如下图所示:
在这里插入图片描述
生成pkl格式的数据集

cd ./mmdetection3d/tools
python create_data.py nuscenes --root-path ./data/nuscenes/v1.0-mini --out-dir ./data/nuscenes/v1.0-mini --extra-tag nuscenes --version v1.0-mini

或者直接修改create_data.py对应的输入参数,如下图所示:
在这里插入图片描述
注意:修改./mmdetection3d/tools/dataset_converters/update_infos_to_v2.py文件
dataroot = out_dir
在这里插入图片描述
否则会报错如下:
在这里插入图片描述
或者直接在终端运行:

python create_data.py nuscenes

成功生成标准数据显示如下:
在这里插入图片描述
运行完后 data/nuscenes目录如下所示:

nuscenes├── v1.0-mini├── maps├── nuscenes_dbinfos_train.pkl   # 新生成的文件├── nuscenes_gt_database         # 新生成的目录├── nuscenes_infos_train.pkl     # 新生成的文件├── nuscenes_infos_val.pkl       # 新生成的文件├── samples├── sweeps└── v1.0-mini

3 BEVFusion

3.1 训练

复制一份配置文件projects/BEVFusion/configs/bevfusion_lidar_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py重命名为bevfusion_lidar.py

1. 只训练lidar数据集

# 配置文件中的max_epochs=2, batch_size=1, num_workers=0
# 上面三个参数按需更改,前期测试环境是否正常,可以按上面数字设置
bash tools/dist_train.sh projects/BEVFusion/configs/bevfusion_lidar.py 1
'''
正常训练时,终端会打印信息如下:
...
12/13 17:56:37 - mmengine - INFO - Epoch(train) [1][150/408]  lr: 1.0551e-04  eta: 0:38:26  time: 0.9984  
data_time: 0.0137  memory: 21795  grad_norm: 16.1443  loss: 12.3859  loss_heatmap: 2.6139  
layer_-1_loss_cls: 3.9985  layer_-1_loss_bbox: 5.7735  matched_ious: 0.0343
'''

配置如图:
在这里插入图片描述
成功训练如图:
在这里插入图片描述
2. lidar和相机数据共同训练

## 2.1 预训练权重
# 因为图像特征提取层配置的swin-transform需要下载预训练权重, 如果网络出问题, 可以加上代码下载即可
# 在bevfusion_lidar-cam.py配置文件全局搜索https://github.com,并在该地址前面加上https://mirror.ghproxy.com/即可## 2.2 训练
# bevfusion_lidar-cam.py配置文件是继承bevfusion_lidar.py所以batch_size,num_workers需要在bevfusion_lidar.py中修改### 2.2.1分布式训练
bash tools/dist_train.sh projects/BEVFusion/configs/bevfusion_lidar-cam.py 1### 2.2.2 单步训练 加载数据时比较慢,不是卡住了,只要报错和卡住就等着
python tools/train.py projects/BEVFusion/configs/bevfusion_lidar-cam.py

配置如下图:
在这里插入图片描述
训练成功如图:
在这里插入图片描述

训练完成结果(权重,配置文件,log,vis_data)后会保存在work_dirs目录下
官方提供了训练好的权重, 参考BEVFusion model
图像预训练权重:Swin pre-trained model

3.2 测试

bash tools/dist_test.sh work_dirs/bevfusion_lidar-cam/bevfusion_lidar-cam.py work_dirs/bevfusion_lidar-cam/epoch_2.pth 1

3.3 可视化

python projects/BEVFusion/demo/multi_modality_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__LIDAR_TOP__1532402927647951.pcd.bin demo/data/nuscenes/ demo/data/nuscenes/n015-2018-07-24-11-22-45+0800.pkl  work_dirs/bevfusion_lidar-cam/bevfusion_lidar-cam.py work_dirs/bevfusion_lidar-cam/epoch_6.pth --cam-type all --score-thr 0.2 --show

可视化结果如下:
在这里插入图片描述
在这里插入图片描述

这篇关于【3D目标检测】MMdetection3d——nuScenes数据集训练BEVFusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124372

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编