【3D目标检测】MMdetection3d——nuScenes数据集训练BEVFusion

2024-08-31 16:12

本文主要是介绍【3D目标检测】MMdetection3d——nuScenes数据集训练BEVFusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

MMdetection3d:【3D目标检测】环境搭建(OpenPCDet、MMdetection3d)

MMdetection3d源码地址:https://github.com/open-mmlab/mmdetection3d/tree/main?tab=readme-ov-file

IS-Fusion源码地址:https://github.com/yinjunbo/IS-Fusion

1 MMdetection3d环境搭建

官网教程链接🔗:https://mmdetection3d.readthedocs.io/en/latest/get_started.html
先准备好MMdetection3d的环境:【3D目标检测】环境搭建(OpenPCDet、MMdetection3d)
**直接抄作业安装如下:**

# 0 安装依赖
sudo apt install wget git g++ cmake ffmpeg libsm6 libxext6# 1 创建虚拟环境
conda create -n mmdet3d python=3.8# 2 激活虚拟环境
conda activate mmdet3d# 3 安装torch
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html# 4 配置安装mmdetection3d
pip install openmim
# 下载的是mmdet3d是v1.3.0版本
git clone https://github.com/open-mmlab/mmdetection3d.git -b v1.3.0
cd mmdetection3d
# 使用mim可以自动配置mmcv,mmdet,mmengine
mim install -v -e .
# "-v" 指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。# 5 安装 cumm-cuxxx spconv-cuxxx
pip install cumm-cu113
pip install spconv-cu113# 6 配置 mmdet3d中的BEVFusion
python projects/BEVFusion/setup.py develop
# 或者运行下面2句
# cd projects/BEVFusion
# pip install -v -e .# 7 安装及查看相关库的版本
## 7.1 openlab相关库安装
mim install mmcv==2.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmdet==3.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmdet3d==1.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmengine==0.10.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
## 7.2 openlab相关库版本
mim list
# 终端显示如下
mmcv       2.1.0      https://github.com/open-mmlab/mmcv
mmdet      3.2.0      https://github.com/open-mmlab/mmdetection
mmdet3d    1.3.0      /root/share/code/mmdetection3d
mmengine   0.10.1     https://github.com/open-mmlab/mmengine## 7.2 torch相关库版本
pip list | grep torch
# 终端显示如下
torch                     1.10.0+cu113
torchaudio                0.10.0+rocm4.1
torchvision               0.11.0+cu113

2 nuScenes数据集准备

数据集下载参考🔗【3D目标检测】OpenPCDet——nuScenes数据集训练BEVFusion/TransFusion_L
可以使用软连接将数据集链接到mmdetection3d/data文件夹下

ln -s /opt/data/DATASETS/nuscenes /opt/data/CNN_3D/mmdetection3d/data
├── data
│   ├── nuscenes
│   │   │── v1.0-trainval (or v1.0-mini if you use mini)
│   │   │   │── samples
│   │   │   │── sweeps
│   │   │   │── maps
│   │   │   │── v1.0-trainval 

重要!!!!!!
如果是nuscenes-mini数据集,需要修改文件
mmdet3d/datasets/nuscenes_dataset.py文件中的v1.0-trainval改成v1.0-mini即可
nuscenes-full无需修改,如下图所示:
在这里插入图片描述
生成pkl格式的数据集

cd ./mmdetection3d/tools
python create_data.py nuscenes --root-path ./data/nuscenes/v1.0-mini --out-dir ./data/nuscenes/v1.0-mini --extra-tag nuscenes --version v1.0-mini

或者直接修改create_data.py对应的输入参数,如下图所示:
在这里插入图片描述
注意:修改./mmdetection3d/tools/dataset_converters/update_infos_to_v2.py文件
dataroot = out_dir
在这里插入图片描述
否则会报错如下:
在这里插入图片描述
或者直接在终端运行:

python create_data.py nuscenes

成功生成标准数据显示如下:
在这里插入图片描述
运行完后 data/nuscenes目录如下所示:

nuscenes├── v1.0-mini├── maps├── nuscenes_dbinfos_train.pkl   # 新生成的文件├── nuscenes_gt_database         # 新生成的目录├── nuscenes_infos_train.pkl     # 新生成的文件├── nuscenes_infos_val.pkl       # 新生成的文件├── samples├── sweeps└── v1.0-mini

3 BEVFusion

3.1 训练

复制一份配置文件projects/BEVFusion/configs/bevfusion_lidar_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py重命名为bevfusion_lidar.py

1. 只训练lidar数据集

# 配置文件中的max_epochs=2, batch_size=1, num_workers=0
# 上面三个参数按需更改,前期测试环境是否正常,可以按上面数字设置
bash tools/dist_train.sh projects/BEVFusion/configs/bevfusion_lidar.py 1
'''
正常训练时,终端会打印信息如下:
...
12/13 17:56:37 - mmengine - INFO - Epoch(train) [1][150/408]  lr: 1.0551e-04  eta: 0:38:26  time: 0.9984  
data_time: 0.0137  memory: 21795  grad_norm: 16.1443  loss: 12.3859  loss_heatmap: 2.6139  
layer_-1_loss_cls: 3.9985  layer_-1_loss_bbox: 5.7735  matched_ious: 0.0343
'''

配置如图:
在这里插入图片描述
成功训练如图:
在这里插入图片描述
2. lidar和相机数据共同训练

## 2.1 预训练权重
# 因为图像特征提取层配置的swin-transform需要下载预训练权重, 如果网络出问题, 可以加上代码下载即可
# 在bevfusion_lidar-cam.py配置文件全局搜索https://github.com,并在该地址前面加上https://mirror.ghproxy.com/即可## 2.2 训练
# bevfusion_lidar-cam.py配置文件是继承bevfusion_lidar.py所以batch_size,num_workers需要在bevfusion_lidar.py中修改### 2.2.1分布式训练
bash tools/dist_train.sh projects/BEVFusion/configs/bevfusion_lidar-cam.py 1### 2.2.2 单步训练 加载数据时比较慢,不是卡住了,只要报错和卡住就等着
python tools/train.py projects/BEVFusion/configs/bevfusion_lidar-cam.py

配置如下图:
在这里插入图片描述
训练成功如图:
在这里插入图片描述

训练完成结果(权重,配置文件,log,vis_data)后会保存在work_dirs目录下
官方提供了训练好的权重, 参考BEVFusion model
图像预训练权重:Swin pre-trained model

3.2 测试

bash tools/dist_test.sh work_dirs/bevfusion_lidar-cam/bevfusion_lidar-cam.py work_dirs/bevfusion_lidar-cam/epoch_2.pth 1

3.3 可视化

python projects/BEVFusion/demo/multi_modality_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__LIDAR_TOP__1532402927647951.pcd.bin demo/data/nuscenes/ demo/data/nuscenes/n015-2018-07-24-11-22-45+0800.pkl  work_dirs/bevfusion_lidar-cam/bevfusion_lidar-cam.py work_dirs/bevfusion_lidar-cam/epoch_6.pth --cam-type all --score-thr 0.2 --show

可视化结果如下:
在这里插入图片描述
在这里插入图片描述

这篇关于【3D目标检测】MMdetection3d——nuScenes数据集训练BEVFusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124372

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.