本文主要是介绍【Scipy】scipy.ndimage.zoom矩阵放缩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
scipy.ndimage.zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True)
scipy.ndimage.zoom(
input,
#array---输入多维矩阵
zoom,
#float/sequence---沿轴的缩放系数,如果是浮点型,表示每个轴的缩放是相同的,如果是序列,zoom应包含每个轴的缩放值;
output=None,
#adrray or dtyoe---放置输出的数组,或返回数组的dtype,默认情况下,将创建与输入相同的dtype数据
order=3,
#int---样条插值的阶数,默认为3,顺序必须在0-5范围内;
mode='constant',
#{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}---mode参数确定输入数组如何扩展到其边界之外。 默认为“constant”;
cval=0.0,
#scalar---如果模式为“constant”,则填充输入的过去边缘的值, 默认值为0.0。
perfilter=True)
#bool---确定在插值之前是否使用spline_filter对输入数组进行预过滤。 默认值为True,如果order> 1,将创建一个过滤值的临时float64数组。如果将此值设置为False,如果order> 1,输出将略微模糊,除非输入是预 过滤的,即它是调用的结果 原始输入上的spline_filter。
import numpy as np
import scipy.ndimagex = np.arange(64).reshape(8,8)print 'Original array:'
print xprint 'Resampled by a factor of 2 with nearest interpolation:'
print scipy.ndimage.zoom(x, 2, order=0)print 'Resampled by a factor of 2 with bilinear interpolation:'
print scipy.ndimage.zoom(x, 2, order=1)print 'Resampled by a factor of 2 with cubic interpolation:'
print scipy.ndimage.zoom(x, 2, order=3)print 'Downsampled by a factor of 0.5 with default interpolation:'
print(scipy.ndimage.zoom(x, 0.5))
结果
Original array:
array([[ 0, 1, 2, 3, 4, 5, 6, 7],[ 8, 9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23],[24, 25, 26, 27, 28, 29, 30, 31],[32, 33, 34, 35, 36, 37, 38, 39],[40, 41, 42, 43, 44, 45, 46, 47],[48, 49, 50, 51, 52, 53, 54, 55],[56, 57, 58, 59, 60, 61, 62, 63]])
Resampled by a factor of 2 with nearest interpolation:
[[ 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7][ 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7][ 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15][ 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15][16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23][16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23][24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31][24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31][32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39][32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39][40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47][40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47][48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55][48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55][56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63][56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63]]Resampled by a factor of 2 with bilinear interpolation:
[[ 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7][ 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 11][ 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 14][11 12 12 13 13 14 14 14 15 15 16 16 17 17 18 18][15 15 16 16 17 17 18 18 19 19 20 20 21 21 21 22][19 19 20 20 21 21 21 22 22 23 23 24 24 25 25 26][22 23 23 24 24 25 25 26 26 27 27 28 28 28 29 29][26 27 27 28 28 28 29 29 30 30 31 31 32 32 33 33][30 30 31 31 32 32 33 33 34 34 35 35 35 36 36 37][34 34 35 35 35 36 36 37 37 38 38 39 39 40 40 41][37 38 38 39 39 40 40 41 41 42 42 42 43 43 44 44][41 42 42 42 43 43 44 44 45 45 46 46 47 47 48 48][45 45 46 46 47 47 48 48 49 49 49 50 50 51 51 52][49 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56][52 53 53 54 54 55 55 56 56 56 57 57 58 58 59 59][56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63]]Resampled by a factor of 2 with cubic interpolation:
[[ 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7][ 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9][ 7 8 8 9 9 10 10 11 11 12 12 12 13 13 14 14][12 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19][15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22][19 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26][22 23 23 24 24 25 25 26 26 27 27 27 28 28 29 29][26 26 27 28 28 28 29 29 30 30 31 31 32 32 33 33][30 30 31 31 32 32 33 33 34 34 35 35 35 36 37 37][34 34 35 35 36 36 36 37 37 38 38 39 39 40 40 41][37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 44][41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48][44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 51][49 49 50 50 51 51 51 52 52 53 53 54 54 55 55 56][54 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61][56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63]]Downsampled by a factor of 0.5 with default interpolation:
[[ 0 2 5 7][19 21 23 26][37 40 42 44][56 58 61 63]]
对源码好奇的小伙伴请点击这里https://github.com/scipy/scipy/blob/8648bfe26e1a631321415fbcb3dfca72f24a8648/scipy/ndimage/src/ni_interpolation.c#L562
这篇关于【Scipy】scipy.ndimage.zoom矩阵放缩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!