最大子矩阵和问题归纳总结

2024-09-07 18:32

本文主要是介绍最大子矩阵和问题归纳总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,最大子矩阵问题:
给定一个n*n(0< n <=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。
Example:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其中左上角的子矩阵:
9 2
-4 1
-1 8
此子矩阵的值为9+2+(-4)+1+(-1)+8=15。

二,分析
子矩阵是在矩阵选取部份行、列所组成的新矩阵。
我们首先想到的方法就是穷举一个矩阵的所有子矩阵,然而一个n*n的矩阵的子矩阵的个数当n比较大时时一个很大的数字 O(n^2*n^2),显然此方法不可行。怎么使得问题的复杂度降低呢?对了,相信大家应该知道了,用动态规划。对于此题,怎么使用动态规划呢?

    请先参考-->最大子段和问题这个问题与最大子段有什么联系呢?

1、首先考虑一维的最大子段和问题,给出一个序列a[0],a[1],a[2]…a[n],求出连续的一段,使其总和最大。

a[i]表示第i个元素
dp[i]表示以a[i]结尾的最大子段和

dp[i] = max{a[i], dp[i-1] + a[i]}

解释一下方程:

如果dp[i-1] > 0,则 dp[i] = dp[i-1] + a[i]
如果dp[i-1] < 0,则 dp[i] = a[i]

因为不用记录位置信息,所以dp[]可以用一个变量dp代替:

如果dp > 0,则dp += a[i]
如果dp < 0,则dp = a[i]

2、考虑二维的最大子矩阵问题

我们可以利用矩阵压缩把二维的问题转化为一维的最大子段和问题。因为是矩阵和,所以我们可以把这个矩形的高压缩成1,用加法就行了。

假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):

| a11 …… a1i ……a1j ……a1n |
| a21 …… a2i ……a2j ……a2n |
| . . . . . . . |
| . . . . . . . |
| ar1 …… ari ……arj ……arn |
| . . . . . . . |
| . . . . . . . |
| ak1 …… aki ……akj ……akn |
| . . . . . . . |
| an1 …… ani ……anj ……ann |

那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
(ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
由此我们可以看出最后所求的就是此一维数组的最大子段和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

poj1050:给一个n*n(1<=n<=100)的矩阵,求最大子矩阵和

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int mp[100][100];
int temp[200];
const  int mod = 1e9+7;int solve(int *a,int n)
{int dp = 0,Max = 0;for(int i = 0; i < n; i++){if(dp > 0) dp += a[i];else dp = a[i];Max = max(Max, dp);}return Max;
}int main()
{#ifdef xxzfreopen("in.txt","r",stdin);#endif // xxzint n;while(~scanf("%d",&n)){for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)cin>>mp[i][j];int max_ans = 0;for(int i = 0; i < n; i++){memset(temp,0,sizeof(temp));for(int j = i;j < n; j++){for(int k = 0; k < n; k++)temp[k] += mp[j][k];int ans = solve(temp,n);max_ans = max(max_ans,ans);}}cout<<max_ans<<endl;}return 0;
}

HDU1559:给出n*m(0< n,m<=1000)的矩阵,求规格为x*y的小矩阵最大和为多少。
这题相比上题增加了限制条件,也就是上面那种的特殊情况,如用上面算法时间复杂度是O(n*n*m)则会超时,由于题目对小矩阵有了限制,我们可以用DP做,令a[i][j]为1<=s<=i,1<=t<=j所有元素的和,可以在线处理,那么就可以通过加减来求出当前子矩阵和,就好像计算几个矩阵面积一样(某部分覆盖在一起,所以相加后减去重复的面积)。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int mp[1000][1000];
int temp[200];
const  int mod = 1e9+7;int solve(int *a,int n)
{int dp = 0,Max = 0;for(int i = 0; i < n; i++){if(dp > 0) dp += a[i];else dp = a[i];Max = max(Max, dp);}return Max;
}int main()
{
#ifdef xxzfreopen("in.txt","r",stdin);
#endif // xxzint T;scanf("%d",&T);while(T--){int n,m,x,y;cin>>n>>m>>x>>y;int Max = 0;for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){cin>>mp[i][j];mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1];if(i >= x && j >= y){int ans = mp[i][j] - mp[i-x][j] - mp[i][j-y] + mp[i-x][j-y];Max = max(Max,ans);}}}cout<<Max<<endl;}return 0;
}

其实这题还可以用数状数组做,二维的裸题

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;int S;int mp[1200][1200];
int lowbit(int x)
{return x & -x;
}int  getsum(int x,int y)
{int  sum  = 0;for(int i  = x; i > 0; i -= lowbit(i))for(int j = y; j > 0; j -= lowbit(j)){sum += mp[i][j];}return sum;
}void update(int x,int y,int value)
{for(int i = x; i <= 1200; i += lowbit(i))for(int j = y; j <=1200 ; j += lowbit(j)){mp[i][j] += value;}
}int main()
{#ifdef xxzfreopen("in","r",stdin);#endif // xxzint T;scanf("%d",&T);while(T--){int m,n,x,y;scanf("%d%d%d%d",&m,&n,&x,&y);memset(mp,0,sizeof(mp));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){int temp;scanf("%d",&temp);update(i,j,temp);}}int ans = -1;for(int i = x; i <= m; i++){for(int j = y; j <= n; j++){ans = max(ans,getsum(i,j) - getsum(i-x,j)-getsum(i,j-y) + getsum(i-x,j-y));}}printf("%d\n",ans);}return 0;
}

这篇关于最大子矩阵和问题归纳总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145825

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g