回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出

本文主要是介绍回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出

文章目录

  • 前言
    • 回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出
  • 一、NGO-HKELM 模型
      • 1. NGO(北方苍鹰优化算法)
      • 2. HKELM(混合核极限学习机)
      • 3. NGO-HKELM回归预测模型建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出

一、NGO-HKELM 模型

NGO-HKELM回归预测模型结合了北方苍鹰优化算法(NGO)和混合核极限学习机(HKELM),其详细原理和建模流程如下:

1. NGO(北方苍鹰优化算法)

NGO是一个基于自然界苍鹰捕食行为的优化算法。主要步骤包括:

  • 初始化:生成一个初始的飞蛾种群,每只飞蛾代表一个潜在的解。
  • 适应度评估:计算每只飞蛾对应解的适应度值,这通常基于目标函数的值。
  • 位置更新:通过模拟苍鹰捕食行为来更新飞蛾的位置。主要包括模仿苍鹰的盘旋行为来引导飞蛾向更优解靠近。
  • 优化过程:迭代更新飞蛾的位置,以寻求全局最优解。

在HKELM建模中,NGO通常用于优化HKELM模型的参数,如核函数参数和正则化参数,以提高模型的预测性能。

2. HKELM(混合核极限学习机)

HKELM是一种改进的极限学习机(ELM),通过使用混合核函数来提高模型的灵活性和表达能力。主要步骤包括:

  • 核函数选择:HKELM使用混合核函数(例如线性核、高斯核、拉普拉斯核等)的组合,以获得更好的拟合能力。混合核函数可以更好地捕捉数据的非线性特性。
  • 特征映射:输入数据通过混合核函数进行映射,将数据映射到高维特征空间。
  • 线性回归:在高维特征空间中,通过线性回归来拟合数据,计算出输出权重。
  • 输出预测:根据计算出的权重,对新数据进行预测。

3. NGO-HKELM回归预测模型建模流程

  1. 数据预处理

    • 标准化或归一化输入数据。
    • 分割数据集为训练集和测试集。
  2. 核函数设计

    • 选择适当的混合核函数(如线性核、高斯核等)并设定其初始参数。
  3. 优化过程

    • 使用NGO算法优化HKELM的核函数参数和正则化参数。
    • 通过NGO算法更新参数,以最小化回归预测误差或其他目标函数。
  4. 模型训练

    • 使用优化后的核函数参数和正则化参数训练HKELM模型。
    • 计算特征映射和回归系数。
  5. 模型预测

    • 将训练好的HKELM模型应用于测试集或新数据进行预测。
    • 根据混合核函数映射测试数据,使用回归系数进行预测。
  6. 性能评估

    • 使用评估指标(如均方误差、绝对误差等)评估模型在测试集上的性能。
    • 调整参数和模型结构以进一步提高性能(如果需要)。

总结

NGO-HKELM回归预测模型通过结合北方苍鹰优化算法和混合核极限学习机,能够利用优化算法提高HKELM的性能,同时混合核函数增强了模型对复杂数据模式的捕捉能力。这种组合方法通常能提供更高的预测准确性和更强的泛化能力。

二、实验结果

NGO-HKELM回归预测结果
在这里插入图片描述

HKELM回归预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104538

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档