YOLOv9改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

本文主要是介绍YOLOv9改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文记录的是改进YOLOv9的损失函数,将其替换成Slide Loss,并详细说明了优化原因,注意事项等。Slide Loss函数可以有效地解决样本不平衡问题,为困难样本赋予更高的权重,使模型在训练过程中更加关注困难样本。若是在自己的数据集中发现容易样本的数量非常大,而困难样本相对稀疏,可尝试使用Slide Loss来提高模型在处理复杂样本时的性能。

文章目录

  • 一、本文介绍
  • 二、Slide Loss原理
    • 2.1 IoU含义
    • 2.2 原理
    • 2.2 优势
  • 三、Slide Loss的实现代码
  • 四、添加步骤
    • 4.1 修改utils/loss_tal_dual.py
    • 4.2 Slide Loss的调用


二、Slide Loss原理

2.1 IoU含义

IoU(P, G) = area(P∩G) / area(G),其中P是预测框,G是真实框(ground truth)。IoU的值在[0, 1]之间。

IoU是预测框与真实框的交集面积与并集面积之比。它用于衡量预测框与真实框的重合程度。

2.2 原理

  1. 样本分类依据
    • Slide Loss函数基于预测框和真实框的IoU大小来区分容易样本和困难样本。
    • 为了减少超参数,将所有边界框的IoU值的平均值作为阈值µ,小于µ的被视为负样本,大于µ的为正样本。
  2. 强调边界样本
    • 但处于边界附近的样本由于分类不明确,往往会遭受较大损失。为了解决这个问题,希望模型能够学习优化这些样本,并更充分地利用这些样本训练网络。
    • 首先将样本通过参数µ分为正样本和负样本,然后通过一个加权函数Slide来强调处于边界的样本。
    • Slide加权函数表达式为:
      f ( x ) = { 1 x ≤ μ − 0.1 e 1 − μ μ < x < μ − 0.1 e 1 − x x ≥ u f(x)= \begin{cases} 1&x\leq\mu - 0.1\\ e^{1-\mu}&\mu < x <\mu - 0.1\\ e^{1 - x}&x\geq u \end{cases} f(x)= 1e1μe1xxμ0.1μ<x<μ0.1xu

在这里插入图片描述

2.2 优势

  1. 解决样本不平衡问题
    • 在大多数情况下,容易样本的数量非常大,而困难样本相对稀疏,Slide Loss函数可以有效地解决样本不平衡问题,使模型在训练过程中更加关注困难样本。
  2. 自适应学习阈值
    • 通过自动计算所有边界框的IoU值的平均值作为阈值µ,减少了人为设置超参数的难度,提高了模型的适应性。
  3. 提高模型性能
    • 根据论文实验结果,Slide函数在中等难度和困难子集上提高了模型的性能,使模型能够更好地学习困难样本的特征,提高了模型的泛化能力。

论文:https://arxiv.org/pdf/2208.02019
源码:https://github.com/Krasjet-Yu/YOLO-FaceV2/blob/d9c8f24d5dba392ef9d6b350a7c50b850051b32b/utils/loss.py#L16


三、Slide Loss的实现代码

Slide Loss的实现代码如下:

import math
class SlideLoss(nn.Module):def __init__(self, loss_fcn):super(SlideLoss, self).__init__()self.loss_fcn = loss_fcnself.reduction = loss_fcn.reductionself.loss_fcn.reduction = 'none'  # required to apply SL to each elementdef forward(self, pred, true, auto_iou=0.5):loss = self.loss_fcn(pred, true)if auto_iou < 0.2:auto_iou = 0.2b1 = true <= auto_iou - 0.1a1 = 1.0b2 = (true > (auto_iou - 0.1)) & (true < auto_iou)a2 = math.exp(1.0 - auto_iou)b3 = true >= auto_ioua3 = torch.exp(-(true - 1.0))modulating_weight = a1 * b1 + a2 * b2 + a3 * b3loss *= modulating_weightif self.reduction == 'mean':return loss.mean()elif self.reduction == 'sum':return loss.sum()else:  # 'none'return loss

四、添加步骤

4.1 修改utils/loss_tal_dual.py

此处需要修改的文件是utils/loss_tal_dual.py

loss_tal_dual.py中定义了模型的损失函数和计算方法,我们想要加入新的损失函数就只需要将代码放到这个文件内即可。

Slide Loss添加后如下:

在这里插入图片描述

4.2 Slide Loss的调用

loss_tal_dual.py149行出添加如下代码,使模型调用此Slide Loss函数

BCEcls = SlideLoss(BCEcls)

在这里插入图片描述
此时再次训练模型便会使用Slide Loss计算模型的损失函数。

这篇关于YOLOv9改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104283

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言