【数据结构1】数据结构的分类、数组和列表的区别、栈(括号匹配问题)、队列(双向对列、环形队列、队列内置模块)、从队列读取文件、栈和队列的应用(迷宫问题-[栈-深度优先搜索]、[队列-广度优先搜索])

本文主要是介绍【数据结构1】数据结构的分类、数组和列表的区别、栈(括号匹配问题)、队列(双向对列、环形队列、队列内置模块)、从队列读取文件、栈和队列的应用(迷宫问题-[栈-深度优先搜索]、[队列-广度优先搜索]),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 数据结构的分类
2 数组和列表的区别
3 栈
3.1 栈的基本实现
3.2 栈的应用:括号匹配问题
4 队列
4.1 环形队列的实现
4.2 双向对列
4.3 python队列内置模块
4.4 从队列读取文件
5 栈和队列的应用:迷宫问题
6 栈和队列的应用(迷宫问题[队列-广度优先搜索])

1 数据结构的分类

数据结构按照其逻辑结构可分为线性结构、树结构、图结构
线性结构:数据结构中的元素存在一对一的相互关系
树结构:数据结构中的元素存在一对多的相互关系
图结构:数据结构中的元素存在多对多的相互关系

2 数组和列表的区别

数组与列表有两点不同:1.数组元素类型要相同2.数组长度固定

3 栈

栈(Stack)是一个数据集合,可以理解为只能在一端进行插入或删除操作的列表。
栈的特点:后进先出 LIFO(last-in,frst-out)
栈的概念:栈顶、栈底-栈的基本操作:进栈(压栈):push出栈:pop取栈顶:gettop-栈的实现:使用一般的列表结构即可实现栈进栈:li.append出栈:li.pop取栈顶:li[-1]

在这里插入图片描述

3.1 栈的基本实现

class Stack:def __init__(self):self.stack = []def push(self, element):self.stack.append(element)def pop(self):return self.stack.pop()def get_top(self):if len(self.stack) > 0:return self.stack[-1]return Nonestack = Stack()
stack.push(1)
stack.push(2)
stack.push(3)
print(stack.pop())

3.2 栈的应用:括号匹配问题

def brace_match(s):stack = Stack()match = {'}': '{', ']': '[', ')': '('}for ch in s:if ch in {'(', '[', '{'}:stack.push(ch)else:  # ch in {'}', ']', ')'}if stack.is_empty():return Falseelif stack.get_top() == match[ch]:stack.pop()else:  # stack.get_top() != mathc[ch]return Falseif stack.is_empty():return Truereturn Falseprint(brace_match('[{()}(){()}[]({}){}]'))  # True
print(brace_match('[]}'))  # False

4 队列

队列(Queue)是一个数据集合,仅允许在列表的一端进行插入,另一端进行删除。
进行插入的一端称为队尾(rear),插入动作称为进队或入队
进行删除的一端称为队头(front),删除动作称为出队
队列的性质:先进先出(First-in,First-out)

在这里插入图片描述

4.1 环形队列的实现

环形队列:当队尾指针front ==Maxsize+1时,再前进一个位置就自动到0
队首指针前进1:front=(front+1)% MaxSize
队尾指针前进1:rear=(rear+1)%MaxSize
队空条件:rear ==front
队满条件:(rear+1)% MaxSize == front
class Queue:def __init__(self, size=100):"""初始化一个循环队列。:param size: 队列的最大容量(默认值为100)"""# 创建一个固定大小的列表来存储队列元素self.queue = [0 for _ in range(size)]self.size = size  # 队列的最大容量self.rear = 0     # 队尾指针,指向下一个插入位置self.front = 0    # 队首指针,指向下一个删除位置def push(self, element):"""将元素插入队列。:param element: 要插入的元素:raises IndexError: 如果队列已满,则抛出异常"""if not self.is_filled():  # 检查队列是否已满self.queue[self.rear] = element  # 在队尾位置插入元素self.rear = (self.rear + 1) % self.size  # 更新队尾指针,使用模运算实现循环else:raise IndexError('Queue is filled!')  # 如果队列已满,抛出异常def pop(self):"""从队列中删除并返回队首元素。:return: 从队列中删除的元素:raises IndexError: 如果队列为空,则抛出异常"""if not self.is_empty():  # 检查队列是否为空element = self.queue[self.front]  # 获取队首元素self.front = (self.front + 1) % self.size  # 更新队首指针,使用模运算实现循环return elementelse:raise IndexError('Queue is empty!')  # 如果队列为空,抛出异常def is_empty(self):"""检查队列是否为空。:return: 如果队列为空,返回True;否则,返回False"""# 队列为空的条件是队尾指针和队首指针相同return self.rear == self.frontdef is_filled(self):"""检查队列是否已满。:return: 如果队列已满,返回True;否则,返回False"""# 队列满的条件是队尾指针的下一个位置与队首指针相同return (self.rear + 1) % self.size == self.frontq = Queue(5)
for i in range(4):q.push(i)
print(q.is_filled())  # True

在这里插入图片描述

4.2 双向对列

双向队列的两端都支持进队和出队操作
双向队列的基本操作:队首进队队首出队队尾进队队尾出队

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.3 python队列内置模块

使用方法:from collections import deque
创建队列:queue = deque()
p进队:append()
出队:popleft()
双向队列队首进队:appendleft()
双向队列队尾出队:pop()
from collections import deque# 创建一个双向队列(deque)对象 q
# q = deque()# 使用指定的初始元素和最大长度来创建双向队列
q = deque([1, 2, 3], 5)  # 初始化队列 q,包含元素 1, 2, 3,最大长度为 5# 操作单向队列# 队尾进队:将元素 6 添加到队列的末尾
q.append(6)# 队首出队:移除并返回队列的第一个元素
# q.popleft()
print(q.popleft())  # 输出: 1# 操作双向队列# 队首进队:将元素 1 添加到队列的开头
q.appendleft(1)# 队尾出队:移除并返回队列的最后一个元素
q.pop()

4.4 从队列读取文件

from collections import dequedef tail(n):with open('test.txt', 'r') as f:q = deque(f, n)return q# print(tail(5))
for line in tail(5):print(line, end='')

5 栈和队列的应用:迷宫问题

栈:深度优先搜索
回溯法
思路:从一个节点开始,任意找下一个能走的点,当找不到能走的点时,退回上一个点寻找是否有其他方向的点。
使用栈存储当前路径
# 1代表墙  0代表通道
maze = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 0, 0, 1, 0, 0, 0, 1, 0, 1],[1, 0, 0, 1, 0, 0, 0, 1, 0, 1],[1, 0, 0, 0, 0, 1, 1, 0, 0, 1],[1, 0, 1, 1, 1, 0, 0, 0, 0, 1],[1, 0, 0, 0, 1, 0, 0, 0, 0, 1],[1, 0, 1, 0, 0, 0, 1, 0, 0, 1],[1, 0, 1, 1, 1, 0, 1, 1, 0, 1],[1, 1, 0, 0, 0, 0, 0, 0, 0, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]dirs = [lambda x, y: (x + 1, y),  # 下lambda x, y: (x - 1, y),  # 上lambda x, y: (x, y - 1),  # 左lambda x, y: (x, y + 1)   # 右
]def maze_path(x1: int, y1: int, x2: int, y2: int) -> bool:"""在迷宫中寻找从 (x1, y1) 到 (x2, y2) 的路径:param x1: 起点的x坐标:param y1: 起点的y坐标:param x2: 终点的x坐标:param y2: 终点的y坐标:return: 如果找到路径返回 True,并打印路径;否则返回 False"""stack = []  # 用栈来存储路径stack.append((x1, y1))  # 将起点坐标入栈while len(stack) > 0:  # 当栈不为空时,循环寻找路径cur_node = stack[-1]  # 取当前路径的最后一个节点作为当前节点if cur_node[0] == x2 and cur_node[1] == y2:  # 如果当前节点是终点for p in stack:  # 打印路径print(p)return True  # 找到路径,返回 True# 尝试从当前节点向四个方向移动for dir in dirs:next_node = dir(cur_node[0], cur_node[1])  # 计算下一个节点的位置# 如果下一个节点是通道(未访问过)if maze[next_node[0]][next_node[1]] == 0:stack.append(next_node)  # 将下一个节点入栈maze[next_node[0]][next_node[1]] = 2  # 标记该节点已访问过break  # 成功移动到新节点,退出当前循环else:maze[next_node[0]][next_node[1]] = 2stack.pop()  # 如果四个方向都无法移动else:  # 如果栈为空且未找到路径print('无路可走')return False  # 返回 False,表示没有找到路径# 调用迷宫路径寻找函数,从 (1, 1) 到 (8, 8)
print(maze_path(1, 1, 8, 8))

6 栈和队列的应用(迷宫问题[队列-广度优先搜索])

思路:从一个节点开始,寻找所有接下来能继续走的点,继续不断寻找,直到找到出口。
使用队列存储当前正在考虑的节点

图形演示
在这里插入图片描述

from collections import deque# 1代表墙  0代表通道
maze = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 0, 0, 1, 0, 0, 0, 1, 0, 1],[1, 0, 0, 1, 0, 0, 0, 1, 0, 1],[1, 0, 0, 0, 0, 1, 1, 0, 0, 1],[1, 0, 1, 1, 1, 0, 0, 0, 0, 1],[1, 0, 0, 0, 1, 0, 0, 0, 0, 1],[1, 0, 1, 0, 0, 0, 1, 0, 0, 1],[1, 0, 1, 1, 1, 0, 1, 1, 0, 1],[1, 1, 0, 0, 0, 0, 0, 0, 0, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]dirs = [lambda x, y: (x + 1, y),  # 下lambda x, y: (x - 1, y),  # 上lambda x, y: (x, y - 1),  # 左lambda x, y: (x, y + 1)  # 右
]def print_node(path):"""还原并打印从起点到终点的实际路径:param path: 保存路径的列表,每个元素是一个三元组,表示当前节点的坐标和其父节点的索引"""real_path = list()  # 存储实际路径i = len(path) - 1  # 从路径的最后一个节点开始回溯while i >= 0:real_path.append(path[i][0:2])  # 将当前节点的坐标添加到实际路径中i = path[i][2]  # 继续回溯到父节点real_path.reverse()  # 由于是从终点回溯到起点,所以需要反转路径for node in real_path:print(node)  # 打印实际路径中的每个节点坐标def maze_path_queue(x1: int, y1: int, x2: int, y2: int) -> bool:"""使用广度优先搜索(BFS)在迷宫中寻找从 (x1, y1) 到 (x2, y2) 的路径:param x1: 起点的x坐标:param y1: 起点的y坐标:param x2: 终点的x坐标:param y2: 终点的y坐标:return: 如果找到路径返回 True,否则返回 False"""queue = deque()  # 初始化队列用于BFSpath = list()  # 保存已访问节点的路径,每个元素包含节点坐标和其父节点的索引queue.append((x1, y1, -1))  # 将起点节点入队,初始节点没有父节点,因此索引为 -1while len(queue) > 0:  # 当队列不空时,继续寻找路径cur_node = queue.popleft()  # 从队列中取出当前节点path.append(cur_node)  # 将当前节点加入到路径中if cur_node[0] == x2 and cur_node[1] == y2:  # 检查当前节点是否为终点print_node(path)  # 如果到达终点,则打印实际路径return True  # 返回 True 表示成功找到路径# 遍历当前节点的四个可能的移动方向for dir in dirs:next_node = dir(cur_node[0], cur_node[1])  # 计算下一个节点的坐标# 如果下一个节点是通道(未访问过)if maze[next_node[0]][next_node[1]] == 0:queue.append((next_node[0], next_node[1], len(path) - 1))  # 将下一个节点入队,并记录其父节点的索引maze[next_node[0]][next_node[1]] = 2  # 标记该节点已访问过,避免重复访问else:  # 如果队列为空,且未找到路径return False  # 返回 False 表示没有找到路径# 调用迷宫路径寻找函数,从 (1, 1) 到 (8, 8)
print(maze_path_queue(1, 1, 8, 8))

这篇关于【数据结构1】数据结构的分类、数组和列表的区别、栈(括号匹配问题)、队列(双向对列、环形队列、队列内置模块)、从队列读取文件、栈和队列的应用(迷宫问题-[栈-深度优先搜索]、[队列-广度优先搜索])的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100665

相关文章

MybatisPlus 多数据源切换@DS注解失效问题解决

《MybatisPlus多数据源切换@DS注解失效问题解决》在业务开发中使用到了多数据源,遇到了@DS注解失效问题,有两个场景使用到同一个@DS的查询方法,下面就来介绍一下该问题的解决,感兴趣的可以... 在业务开发中使用到了多数据源,遇到了@DS注解失效问题,有两个场景使用到同一个@DS的查询方法,一个正

R语言中的正则表达式深度解析

《R语言中的正则表达式深度解析》正则表达式即使用一个字符串来描述、匹配一系列某个语法规则的字符串,通过特定的字母、数字及特殊符号的灵活组合即可完成对任意字符串的匹配,:本文主要介绍R语言中正则表达... 目录前言一、正则表达式的基本概念二、正则表达式的特殊符号三、R语言中正则表达式的应用实例实例一:查找匹配

Centos7 firewall和docker冲突问题及解决过程

《Centos7firewall和docker冲突问题及解决过程》本文描述了一个在CentOS7上使用firewalld和Docker容器的问题,当firewalld启动或重启时,会从iptable... 目录系统环境问题描述问题排查解决办法总结本文只是我对问题的记录,只能用作参考,不能China编程说明问题,请

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

JAVA Calendar设置上个月时,日期不存在或错误提示问题及解决

《JAVACalendar设置上个月时,日期不存在或错误提示问题及解决》在使用Java的Calendar类设置上个月的日期时,如果遇到不存在的日期(如4月31日),默认会自动调整到下个月的相应日期(... 目录Java Calendar设置上个月时,日期不存在或错误提示java进行日期计算时如果出现不存在的

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Nginx错误拦截转发 error_page的问题解决

《Nginx错误拦截转发error_page的问题解决》Nginx通过配置错误页面和请求处理机制,可以在请求失败时展示自定义错误页面,提升用户体验,下面就来介绍一下Nginx错误拦截转发error_... 目录1. 准备自定义错误页面2. 配置 Nginx 错误页面基础配置示例:3. 关键配置说明4. 生效

MySQL 筛选条件放 ON后 vs 放 WHERE 后的区别解析

《MySQL筛选条件放ON后vs放WHERE后的区别解析》文章解释了在MySQL中,将筛选条件放在ON和WHERE中的区别,文章通过几个场景说明了ON和WHERE的区别,并总结了ON用于关... 今天我们来讲讲数据库筛选条件放 ON 后和放 WHERE 后的区别。ON 决定如何 "连接" 表,WHERE