回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

本文主要是介绍回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

文章目录

  • 前言
    • 回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出
  • 一、NGO-Transformer-BiLSTM模型
      • 回归预测:NGO-Transformer-BiLSTM组合模型的数据预测
      • 1. NGO(北方苍鹰优化算法)
      • 2. Transformer
      • 3. BiLSTM(双向长短期记忆网络)
      • 4. 综合建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

一、NGO-Transformer-BiLSTM模型

回归预测:NGO-Transformer-BiLSTM组合模型的数据预测

NGO-Transformer-BiLSTM 模型结合了北方苍鹰优化算法(NGO)、Transformer架构和双向长短期记忆网络(BiLSTM)。这个组合用于处理具有复杂时序和多特征输入的数据预测任务。以下是详细的原理和流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数,提高预测性能。

原理

  • 模拟苍鹰的猎食行为来优化模型参数。
  • 包括初始化种群、评估适应度、选择和更新种群等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(预测误差)。
  3. 更新:通过猎食行为更新种群。
  4. 迭代:重复更新直到满足停止条件。

2. Transformer

目的:处理复杂的时序依赖关系,捕捉长期依赖。

原理

  • 通过自注意力机制(Self-Attention)对输入数据进行加权求和,捕捉序列中的重要信息。
  • 具有多个编码器和解码器层,能够处理复杂的特征和依赖关系。

流程

  1. 自注意力计算:计算每个输入位置的注意力权重。
  2. 加权求和:根据注意力权重对输入特征进行加权。
  3. 位置编码:通过位置编码添加时间位置信息。

3. BiLSTM(双向长短期记忆网络)

目的:捕捉序列中的前向和后向依赖关系。

原理

  • BiLSTM 包含两个 LSTM 网络,一个处理正向序列,另一个处理反向序列。
  • 双向信息融合提供更丰富的上下文信息。

流程

  1. 前向LSTM:处理序列中的正向时间依赖。
  2. 后向LSTM:处理序列中的反向时间依赖。
  3. 拼接:将前向和后向的输出拼接,形成更完整的特征表示。

4. 综合建模流程

1. 数据预处理

  • 数据清洗:处理缺失值和异常值。
  • 特征提取:提取和标准化多特征输入数据。

2. 模型构建

  • CNN(可选):用于特征提取。
  • Transformer:处理时序特征,生成序列的上下文表示。
  • BiLSTM:进一步捕捉序列中的双向依赖。

3. 参数优化

  • 使用 NGO 优化 Transformer 和 BiLSTM 模型的超参数。

4. 模型训练

  • 输入数据:将处理后的特征输入到 Transformer 和 BiLSTM。
  • 损失函数:使用适当的损失函数(如均方误差)进行训练。

5. 模型预测

  • 使用训练好的模型对新数据进行预测。

6. 模型评估

  • 评估模型的预测性能,如通过均方误差(MSE)或其他评估指标。

总结

NGO-Transformer-BiLSTM 组合模型利用北方苍鹰优化算法来优化模型参数,Transformer 处理复杂的时序特征,BiLSTM 捕捉双向依赖。这个综合模型通过以下步骤完成回归预测任务:数据预处理、模型构建、参数优化、模型训练、预测和评估。

二、实验结果

NGO-Transformer-BiLSTM回归预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

四、代码获取

私信即可 99米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP,NGO-Transformer-BiLSTM等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099457

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G