AI大模型独角兽 MiniMax 基于 Apache Doris 升级日志系统,PB 数据秒级查询响应

本文主要是介绍AI大模型独角兽 MiniMax 基于 Apache Doris 升级日志系统,PB 数据秒级查询响应,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:MiniMax 基础架构研发工程师 Koyomi、香克斯、Tinker

导读:早期 MiniMax 基于 Grafana Loki 构建了日志系统,在资源消耗、写入性能及系统稳定性上都面临巨大的挑战。为此 MiniMax 开始寻找全新的日志系统方案,并基于 Apache Doris 升级了日志系统,新系统已接入 MiniMax 内部所有业务线日志数据,数据规模为 PB 级, 整体可用性达到 99.9% 以上,10 亿级日志数据的检索速度可实现秒级响应。

MiniMax 是领先的通用人工智能科技公司,自主研发了不同模态的通用大模型,其中包括拥有万亿参数的 MoE 文本大模型、语音大模型以及图像大模型。MiniMax 以“与用户共创智能”为愿景,通过对大模型持续迭代,MiniMax 在国内率先完成核心 MoE 算法技术路线的突破。2024 年 4 月,公司推出国内首个上线商用的 MoE 架构、包含万亿参数的大语言模型——“MiniMax-abab 6.5”,模型性能接近国际领先水平。

随着模型复杂度以及模型调用量的不断提升,模型训练及推理产生的运行日志也在激增,这些数据对于 AI 应用的运行监控、优化及问题定位至关重要。早期 MiniMax 基于 Grafana Loki 构建了日志系统,在资源消耗、写入性能及系统稳定性上都面临巨大的挑战。为此 MiniMax 开始寻找全新的日志系统方案,并对业界具有代表性的技术栈 Apache Doris 和 Elasticsearch 进行了对比,Apache Doris 在性能、成本以及易用性等方面均优于 Elasticsearch,因此最终选择了 Apache Doris 来构建日志系统。

目前基于 Apache Doris 的新系统已接入 MiniMax 内部所有业务线日志数据,数据规模为 PB 级, 整体可用性达到 99.9% 以上,10 亿级日志数据的检索速度可实现秒级响应

问题及痛点

MiniMax 早期日志系统架构基于 Loki 搭建,Loki 是由 Grafana Labs 团队开发的开源日志聚合系统,设计思想受 Prometheus 启发,不使用传统索引结构、仅对日志标签和元数据构建索引,核心模块包括 Loki、Promtail、Grafana 三个部分,其中 Loki 是主服务器、负责日志存储和查询,Promtail 是代理层、负责采集日志并发送给 Loki,而 Grafana 则用于 UI 展示。

在实际 Grafana Loki 使用中,每个集群中单独部署一套完整的日志采集器 + Loki 日志存储/查询服务。Loki 采用 Index + Chunk 的日志存储设计,写入时按日志标签的哈希值将不同日志流分散到各个 Ingester 上实现负载均衡,由 Ingester 负责将日志数据写入对象存储。查询时,Querier 从对象存储取出 Index 对应的 Chunk 后进行日志匹配。

问题及痛点.PNG

尽管 Grafana Loki 定位为轻量级、水平可拓展和高可用的日志系统,但其在实际业务使用过程中仍存在一些问题:

  • 查询资源消耗过大: Loki 未对日志内容创建索引,只能按照标签粒度对日志进行初步过滤。如果想要实现日志内容搜索功能,需使用 Query 对全量日志数据进行全文正则匹配, 而该操作会带来巨大的突发资源消耗,包括 CPU、内存、网络带宽。当查询的数据量和 QPS 越来越大时,Loki 的资源消耗及其稳定性问题也变得越来越不可忍受。

  • Loki 架构复杂繁多: Loki 除了上图涉及模块之外,还有 Index Gateway、 Memcache、 Compactor 等模块,过多的架构组件给系统运维和管理带来很高的难度,配置起来也非常复杂。

  • 维护成本及难度高: MiniMax 部署集群数量较多,且每个集群的系统、资源、存储、网络等环境都有差异, 如果在每个集群中部署一套独立的 Loki 架构,维护成本及运维难度都非常高。

为什么选择 Apache Doris

根据 AI 场景的数据特点及业务需求,MiniMax 对新日志系统提出了以下要求:

  • 日志数据规模庞大:由于 AI 业务场景具备链路长、上下文数据多、单次请求数据量大等特点,其产生的日志体量远远高于相同用户量级的其他互联网产品,这要求系统能够以较低的成本、稳定可靠的存储这些数据。

  • 查询性能要求高:业务对日志查询速度有较高的要求, 比如 1 亿条数据需要在秒级返回查询结果。

  • 分析灵活:要求系统能够支持日志指标查询、如某些关键词的统计曲线,同时能够提供日志告警服务。

  • 低成本:由于日志原始数据量达到 PB 级,而且还在不断增加,存储和计算的成本需要控制在合理范围内。

MiniMax 参考了当前业界成熟的日志系统架构解决方案,发现主流的日志系统一般包含以下几个关键组件:

  • 采集端:负责从服务的标准输出采集日志,并将数据推送到中心消息队列。
  • 消息队列:负责解耦上下游、削峰填谷。在下游组件不可用时,仍然能保留一段时间的数据,保证系统稳定性。
  • 存储查询中间件:负责日志数据的存储和查询,在日志系统场景下,一般要求该中间件具备倒排索引能力,来支持高效的日志检索。

根据上述方案组成,MiniMax 决定在新日志系统中:采集端使用 iLogtail、消息队列使用 Kafka、存储中间件为 Apache Doris。在存储中间件的选择上,对比了业界具有代表性的 Apache Doris 和 Elasticsearch 这两个技术栈:

为什么选择 Apache Doris.PNG

Apache Doris 在成本、写入性能、查询性能这几大维度均有较好的表现,尤其在存储效率、写入吞吐、聚合分析等方面有突出的优势,同时兼容 MySQL 的 SQL 语法也更加易用,因此最终选择 Apache Doris 作为存储中间件。

Aapche Doris 日志系统升级实践

 Aapche Doris 日志系统升级实践.png

新日志系统(Mlogs)更加简洁,一套架构即可服务全部集群。上层为日志系统的控制面, 包括日志查询接口封装以及配置自动生产与下发模块。 下层是日志系统的数据面, 从左到右依次是日志采集端、消息队列、日志写入器、Doris 数据库

集群服务产生的日志数据由 iLogtail 采集并推送到 Kafka,一部分会经由 Mlogs Ingester 从 Kafka 拉取并通过 Doris 的 Stream Load 写入到 Doris 集群中,另一部分则由 Doris 通过 Routine Load 直接实时订阅拉取Kafka 的消息流 。最后由 Doris 承担全量日志数据的存储与查询,无需每套集群单独部署

在具体的应用落地方面:

  • 在日志导入上: 新架构同时使用了 Doris Routine Load 和 Stream Load 方式。Routine Load 开箱即用,可直接处理不需要额外解析处理的 JSON 格式日志。而对于需要过滤与处理的复杂日志, MiniMax 在 Kafka 和 Doris 之间增加了日志写入器 Mlogs Ingester,由其解析和处理后,再通过 Stream Load 写入 Doris 中。

  • 在日志检索上: 主要使用了 Doris 倒排索引分词查询能力以及全文正则查询能力。

    • 倒排索引分词查询能力:分词查询性能较好, 场景覆盖度较广,主要采用倒排索引查询MATCHMATCH_PHRASE

    • 全文正则查询能力:正则查询精度更高,性能低于比分词查询, 适合小范围查询且对查询精度要求较高的场景,主要使用正则查询 REGEXP

  • 在性能提升上:为进一步提升性能,实现了查询截断功能。当前日志数据按照时间顺序呈线性排列, 如果用户选择的查询范围过大, 会消耗较大的计算存储网络资源, 从而导致查询超时甚至系统不可用。 因此,对用户的查询进行了时间范围截断, 避免查询范围过大;并提前统计所有表的每 15 分钟的数据量, 动态地预估用户在不同表中最大可查询的时间长度。

  • 在成本控制上: 使用了 Doris 的冷热数据分层能力, 将 7 天内的数据定义为热数据,7 天之前的数据为冷数据。冷数据存储到对象存储, 以降低存储成本;同时对 30 天之前的对象存储数据进行归档, 仅在必要时恢复归档数据, 这也极大地降低了存量数据的存储成本。

使用收益

目前基于 Apache Doris 的新架构已接入 MiniMax 内部所有业务线日志数据,数据规模为 PB 级, 整体可用性达到 99.9% 以上, 同时也带来以下收益:

  • 架构简化:新架构部署简单、一套架构即可服务全部集群,降低了整体系统维护及管理的复杂度,节省了大量的运维人力及成本投入。

  • 秒级查询响应: 基于 Apache Doris 的倒排索引能力及查询拦截功能,性能显著提升的同时系统也更加稳定。从 10 亿数据中查询单个关键字以及进行聚合分析,基本可以在 2s 内完成,对于日志数据的分析,大部分场景也可以做到秒级响应。

  • 写入性能高:当前系统规格可以实现 10 GB/s 级别的日志写入吞吐,能够在满足持续高吞吐写入的同时满足实时性要求,数据延迟控制在秒级。

  • 存储成本低: 数据压缩率较高达到 1:5 倍以上,因此存储空间占用较原本架构极大幅度降低。对于冷数据使用 Doris 冷热分层能力进一步降低数据的存储成本,存储成本节省超过 70%。

未来规划

未来 MiniMax 将持续迭代日志系统, 并重点从以下几方面发力:

  • 丰富日志导入预处理能力:增加日志采样、结构化等预处理能力,进一步提升数据的可用性及存储性价比。

  • 增加 Tracing 能力:尝试将监控、告警、Tracing、日志等各方面的可观测性系统打通,以提供全方位的运维洞察。

  • 扩大 Doris 使用范围:除日志场景之外,Doris 逐步被引入数据分析和大数据处理场景下,助力后续构建数据湖仓能力。

这篇关于AI大模型独角兽 MiniMax 基于 Apache Doris 升级日志系统,PB 数据秒级查询响应的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097202

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo