基于YOLO V8的PCB缺陷检测识别系统(python源码+Pyqt5界面+数据集+训练代码)

本文主要是介绍基于YOLO V8的PCB缺陷检测识别系统(python源码+Pyqt5界面+数据集+训练代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 数据集准备:收集并标注PCB缺陷的图像。
  2. 模型训练:使用YOLO v8框架训练一个模型来识别这些缺陷。
  3. GUI开发:利用PyQt5创建一个用户友好的图形界面。
  4. 模型部署:在GUI中集成训练好的模型,使用户能够上传PCB图像并得到缺陷检测的结果。

下面是对这个项目的简要介绍以及一个简单的代码示例,包括了训练代码和GUI界面的基本结构。

项目简介

1. 数据集准备
  • 数据集:收集带有不同PCB缺陷类型的图像,并使用如LabelImg等工具进行标注。
  • 数据集划分:将数据集分为训练集、验证集和测试集。
2. 模型训练
  • 使用YOLO v8框架(如ultralytics/yolov8)进行训练。
  • 配置文件定义模型架构和训练参数。
  • 使用GPU加速训练过程。

3. GUI开发
  • 使用PyQt5设计一个简洁直观的界面,允许用户上传图片、查看结果等。
  • 实现模型加载和推理功能。
4. 模型部署
  • 将训练好的模型部署到GUI中,使得用户可以方便地使用该系统进行PCB缺陷检测。

训练代码示例

下面是一个简单的YOLO v8训练脚本示例,用于训练PCB缺陷检测模型。

1# train.py
2
3from ultralytics import YOLO
4
5# 加载YOLO v8模型
6model = YOLO('yolov8n.pt')  # 使用预训练模型作为基础
7
8# 设置训练参数
9data_config = 'data.yaml'  # 数据集配置文件
10epochs = 100  # 训练轮数
11batch = 16  # 批量大小
12
13# 开始训练
14results = model.train(data=data_config, epochs=epochs, batch=batch)

GUI代码示例

下面是一个使用PyQt5创建的基本GUI界面示例,用于展示如何集成YOLO v8模型进行实时检测。

1# gui.py
2
3import sys
4from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QVBoxLayout, QLabel, QFileDialog
5from PyQt5.QtGui import QPixmap
6import cv2
7import numpy as np
8from ultralytics import YOLO
9
10class PCBDefectDetector(QWidget):
11    def __init__(self):
12        super().__init__()
13        self.initUI()
14
15    def initUI(self):
16        self.setWindowTitle('PCB Defect Detection System')
17        self.setGeometry(300, 300, 600, 400)
18
19        self.image_label = QLabel(self)
20        self.image_label.resize(400, 300)
21
22        self.load_button = QPushButton('Load Image', self)
23        self.load_button.clicked.connect(self.loadImage)
24
25        layout = QVBoxLayout()
26        layout.addWidget(self.image_label)
27        layout.addWidget(self.load_button)
28        self.setLayout(layout)
29
30    def loadImage(self):
31        options = QFileDialog.Options()
32        options |= QFileDialog.ReadOnly
33        file_name, _ = QFileDialog.getOpenFileName(self, "Open Image", "", "Image Files (*.png *.jpg *.jpeg)", options=options)
34        if file_name:
35            image = cv2.imread(file_name)
36            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
37            self.detect_defects(image)
38            height, width, channel = image.shape
39            bytes_per_line = 3 * width
40            q_image = QImage(image.data, width, height, bytes_per_line, QImage.Format_RGB888)
41            pixmap = QPixmap.fromImage(q_image)
42            self.image_label.setPixmap(pixmap)
43
44    def detect_defects(self, image):
45        # 加载模型
46        model = YOLO('path/to/best.pt')  # 替换为你的模型路径
47
48        # 进行推理
49        results = model.predict(source=image, save=False)
50
51        # 处理结果
52        for r in results:
53            boxes = r.boxes
54            for box in boxes:
55                b = box.xyxy[0]  # 获取边界框
56                c = box.cls  # 获取分类
57                # 绘制边界框
58                cv2.rectangle(image, (int(b[0]), int(b[1])), (int(b[2]), int(b[3])), (0, 255, 0), 2)
59
60app = QApplication(sys.argv)
61ex = PCBDefectDetector()
62ex.show()
63sys.exit(app.exec_())

项目结构

  • train.py:用于训练模型。
  • gui.py:用于运行GUI应用程序。
  • data.yaml:数据集配置文件。
  • images/ 和 labels/:存放训练图像和标注文件的目录。

请确保你已经安装了所有必要的库,并且正确设置了YOLO v8模型的路径。此外,你需要准备一个适当的数据集,并根据实际情况修改训练和GUI代码中的相关路径。

 

这篇关于基于YOLO V8的PCB缺陷检测识别系统(python源码+Pyqt5界面+数据集+训练代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095916

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi