通过 MATLAB 的 cylinder 函数生成圆柱体的表面坐标,生成表示一个具有非标准形状的圆柱体(在本例中是杯子)

本文主要是介绍通过 MATLAB 的 cylinder 函数生成圆柱体的表面坐标,生成表示一个具有非标准形状的圆柱体(在本例中是杯子),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MATLAB的机器人系统工具箱(RST)的官方例程Plan a Reaching Trajectory with Multiple Kinematic Constraints规划具有多个运动学约束的到达轨迹
在这里插入图片描述

% 创建用于视觉化杯子的点
[X,Y,Z] = cylinder(cupRadius*linspace(0,1,50).^0.125);
% 调整 Z 坐标的比例,使其符合杯子的高度
Z = cupHeight*Z - cupHeight/2;
% 将杯子的位置平移到指定位置
X = X + cupPosition(1);
Y = Y + cupPosition(2);
Z = Z + cupPosition(3);
% 将杯子添加到图形中,并配置照明
s = patch(surf2patch(X,Y,Z));
s.FaceColor = 'blue';          % 设置杯子的颜色为蓝色
s.FaceLighting = 'gouraud';    % 设置照明效果为 Gouraud 渲染
s.EdgeAlpha = 0;               % 将边缘透明度设置为 0% 移动光源的位置,使杯子的侧面被照亮
lightObj = findobj(gca,'Type','Light');
for i = 1:length(lightObj)lightObj(i).Position = [1,1,1];
end

Y-Z视图

在这里插入图片描述

[X,Y,Z] = cylinder(cupRadius*linspace(0,1,50).^0.125);

这行代码用于生成表示一个具有非标准形状的圆柱体(在本例中是杯子)的三维坐标点。具体来说,它通过 MATLAB 的 cylinder 函数生成圆柱体的表面坐标,然后对这些坐标进行一定的处理,以实现独特的形状效果。

逐步解释:
  1. linspace(0,1,50):

    • 生成从 0 到 1 之间的 50 个等间距的数值。
    • 这些数值表示圆柱体沿径向(半径方向)的分布,用于生成圆柱体的外形。
  2. linspace(0,1,50).^0.125:

    • 对生成的 50 个数值进行 0.125 次幂运算。
    • 幂次操作:幂次小于 1的幂次操作会导致数值在靠近 0 的部分变化较快,而在接近 1 的部分变化较慢,表现为更“平缓”的增长曲线
  3. cupRadius*linspace(0,1,50).^0.125:

    • 将计算出的半径值乘以 cupRadius,以生成实际的杯子半径。
    • 这一步将非线性调整的半径值缩放到实际的杯子尺寸。
  4. cylinder(cupRadius*linspace(0,1,50).^0.125):

    • cylinder 函数使用给定的半径值生成一个圆柱体的三维坐标点。
    • cylinder 函数默认生成一个高为 1,底部在 z=0,顶部在 z=1 的圆柱体,其参数是圆柱体各层的半径。通过这种方式,生成的圆柱体会有一个非线性收缩的效果,导致生成的形状在底部较窄,而在顶部逐渐变宽,更接近实际杯子的形状。
  5. [X, Y, Z]:

    • cylinder 函数输出三个矩阵 XYZ,它们分别表示圆柱体表面的 x、y 和 z 坐标。
    • 这些矩阵可以直接用于绘制圆柱体的表面,表示杯子的三维形状。

幂次操作演示

clear;clc;close all;x = linspace(0, 1, 5); % 生成 0 到 1 之间的 5 个等间距数值% 不同幂次操作
y1 = x .^ 1;        % 线性,不做幂次操作,[0, 0.25, 0.5, 0.75, 1]
y2 = x .^ 0.5;      % 平方根,进行 0.5 次幂的操作,[0, 0.5, 0.7071, 0.866, 1]
y3 = x .^ 0.125;    % 进行 0.125 次幂的操作%,[0, 0.861, 0.9306, 0.9715, 1]% 绘制第一组曲线
plot(x, y1, '-o', 'DisplayName', 'x^1'); hold on;
plot(x, y2, '-o', 'DisplayName', 'x^0.5');
plot(x, y3, '-o', 'DisplayName', 'x^0.125');
legend show;
xlabel('Original values');
ylabel('Transformed values');
title('Effect of Different Power Operations');% 生成 0 到 1 之间的 50 个等间距数值
x_fine = linspace(0, 1, 50);% 对新的数值集进行相同的幂次操作
y1_fine = x_fine .^ 1;
y2_fine = x_fine .^ 0.5;
y3_fine = x_fine .^ 0.125;% 绘制第二组曲线
plot(x_fine, y1_fine, '*', 'DisplayName', 'x^1 (50 points)'); hold on;
plot(x_fine, y2_fine, '*', 'DisplayName', 'x^0.5 (50 points)');
plot(x_fine, y3_fine, '*', 'DisplayName', 'x^0.125 (50 points)');
legend show;

在这里插入图片描述

这篇关于通过 MATLAB 的 cylinder 函数生成圆柱体的表面坐标,生成表示一个具有非标准形状的圆柱体(在本例中是杯子)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093901

相关文章

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数