代码随想录算法训练营Day44|322.零钱兑换、279.完全平方数、139.单词拆分

本文主要是介绍代码随想录算法训练营Day44|322.零钱兑换、279.完全平方数、139.单词拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

零钱兑换

322. 零钱兑换 - 力扣(LeetCode)

本题是完全背包问题

dp数组表示组成amount金额所需的最少硬币个数。

考虑dp数组的推导公式,由于是计算最少硬币的个数,所以需要考虑dp[i-coins[j]+1和dp[i]的较小值。所以dp[i] = min(dp[i-coins[j]]+1,dp[i]),其中i为遍历过程中的amout值,coins[j]为硬币的面值。

已知推导公式,我们需要对dp数组赋值,由于dp推导式中求的是较小值,所以我们设定dp[0] = 0,其余值都为INT_MAX。

之后是对dp数组的遍历顺序,这里由于我们考虑的是最少银币个数,并不在乎排列或是组合的情况(组成的数目),所以对背包或是物品进行遍历都是可以的,这里我使用先背包后物品的遍历方式。

class Solution {
public:int coinChange(vector<int>& coins, int amount) {// 创建一个动态规划数组dp,大小为amount+1,初始化为INT_MAX(表示无法凑成的金额)vector<int>dp(amount+1,INT_MAX);// 找零0元需要0个硬币dp[0] = 0;// 遍历从1到amount的每一个金额for(int i = 1; i<=amount;i++){// 遍历每一种硬币for(int j = 0;j<coins.size();j++){// 如果当前金额大于或等于当前硬币面额,并且当前金额减去当前硬币面额的找零方式存在if(i-coins[j]>=0 and dp[i-coins[j]]!=INT_MAX){// 更新当前金额的最少硬币数量为min(当前最少硬币数量, 减去当前硬币面额的金额的硬币数量+1)dp[i] = min(dp[i],dp[i-coins[j]]+1);}}}// 如果amount的找零方式不存在,返回-1if(dp[amount] == INT_MAX)return -1;// 返回amount的最少硬币找零数量return dp[amount];}
};

算法的时间复杂度为O(n*m),n为coins数组的长度,m为amount+1,空间复杂度为O(m),需要维护一个dp数组,长度为amount+1.

完全平方数

279. 完全平方数 - 力扣(LeetCode)

感觉本题和上题比较类似,唯一的不同在于coins数组需要我们自己获取。

dp数组定义等都和上题相同。

class Solution {
public:int numSquares(int n) {// 创建一个动态规划数组dp,大小为n+1,初始化为INT_MAX(表示无法组成的情况)vector<int> dp(n+1, INT_MAX);// 创建一个数组T_S_N,用于存储小于等于n的所有完全平方数vector<int> T_S_N; // total Square numbers// 计算小于等于n的所有完全平方数并存储到T_S_N中for (int i = 1; i * i <= n; i++) {T_S_N.push_back(i * i);}// 组成0需要0个完全平方数dp[0] = 0;// 遍历从1到n的每一个金额for (int i = 1; i <= n; i++) {// 遍历每一种完全平方数for (int j = 0; j < T_S_N.size(); j++) {// 如果当前数值大于或等于当前完全平方数,并且当前数值减去当前完全平方数的组成方式存在if (i - T_S_N[j] >= 0 && dp[i - T_S_N[j]] != INT_MAX) {// 更新当前数值的最少完全平方数数量为min(当前最少完全平方数数量, 减去当前完全平方数的金额的完全平方数数量+1)dp[i] = min(dp[i - T_S_N[j]] + 1, dp[i]);}}}// 返回n的最少完全平方数组成数量return dp[n];}
}; 

看了下代码随想录里面,看起来没必要先获取这个数组,所以代码可以更改为

class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) { // 遍历物品for (int j = i * i; j <= n; j++) { // 遍历背包dp[j] = min(dp[j - i * i] + 1, dp[j]);}}return dp[n];}
};

算法的时间复杂度为O(n*(3/2)),空间复杂度为O(n)。

单词拆分

139. 单词拆分 - 力扣(LeetCode)

具体参考代码随想录 代码随想录 (programmercarl.com)。

考虑单词为物品,所要匹配的字符串为背包,单词可以重复使用,就是一个使用单词匹配字符串(单词是否能完全构成字符串)的完全背包问题。

这里我们考虑将单词数组存入哈希集合,因为可以方便快速寻找

dp[i]中i表示字符串的长度,dp[i]表示为是否可以拆分为单词数组中的单词,值为true 或false.

dp[i]的递推公式我们应这样考虑,若dp[before_i]为true,且before_i至i的位置的字符串存在于单词数组中,则dp[i]为true,否则为false。

考虑到dp[i]取决于前面的值,则dp[0] = true,否则后续值递推全为false。

遍历方式:这里需注意应为排列,每个单词元素的顺序是有意义的。因此考虑先背包后物品的遍历方式

最后返回数组的末尾元素即知道拆分是否可能实现。

class Solution {
public:bool wordBreak(string s, vector<string>& wordDict) {// 创建一个哈希集合word_set,用于存储wordDict中的所有单词,以便快速查找unordered_set<string> word_set{};// 将wordDict中的所有单词插入到word_set中for (auto word : wordDict) {word_set.insert(word);}// 创建一个动态规划数组dp,大小为s.size()+1,初始化为false// dp[i]表示字符串s的前i个字符是否可以被拆分成wordDict中的单词vector<bool> dp(s.size() + 1, false);// 初始化dp[0]为true,因为空字符串可以被拆分成空集合dp[0] = true;// 遍历字符串s的每一个位置for (int i = 1; i <= s.size(); i++) {// 对于每个位置i,尝试从0到i的所有分割点jfor (int j = 0; j < i; j++) {// 取出从j到i的子串string word = s.substr(j, i - j);// 如果子串word在word_set中,并且dp[j]为true(前j个字符可以拆分)if (word_set.find(word) != word_set.end() && dp[j]) {// 则dp[i]为true,表示前i个字符可以拆分dp[i] = true;}}}// 返回dp[s.size()]return dp[s.size()];}
}; 
  • 时间复杂度:O(n^3),因为substr返回子串的副本是O(n)的复杂度(这里的n是substring的长度)
  • 空间复杂度:O(n)

这篇关于代码随想录算法训练营Day44|322.零钱兑换、279.完全平方数、139.单词拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082637

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(