【中文】PDF文档切分\切片\拆分最优方案-数据预处理阶段,为后续导入RAG向量数据库和ES数据库实现双路召回

本文主要是介绍【中文】PDF文档切分\切片\拆分最优方案-数据预处理阶段,为后续导入RAG向量数据库和ES数据库实现双路召回,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的

将PDF文档拆开,拆开后每个数据是文档中的某一段,目的是保证每条数据都有较完整的语义,并且长度不会太长

项目自述

看了很多切分项目,包括langchain、Langchain-Chatchat、、Chinese-LangChain、LangChain-ChatGLM-Webui、ChatPDF、semchunk等等,效果还行,但是不够完美,毕竟他们的对"\n"的优先级设置的较高,使用pymupdf得到的文本中充斥着大量的"\n",如果全部删掉也十分影响语义

切分逻辑

1、保持段落完整性
2、保持语义完整性

代码逻辑

1、转换PDF文件为DOCX文件
2、循环遍历paragraphs保持段落完整性
3、 以句号为节点,保持语义完整性

代码实现

import re
import os
import csv
from pdf2docx import Converter
from docx import Documentdef pdf_to_docx(pdf_file_path):try:docx_path = os.path.join(os.path.dirname(pdf_file_path), os.path.basename(pdf_file_path).split(".")[0] +".docx")cv = Converter(pdf_file_path)cv.convert(docx_path)cv.close()return docx_pathexcept Exception as e:print(f"转换过程中发生错误:{str(e)}")return Falsedef pdf2docx_to_csv(pdf_file_path, max_length=400):docx_path = pdf_to_docx(pdf_file_path)if not docx_path:return Falsedocx = Document(docx_path)result = []current_text = ""for paragraph in docx.paragraphs:section = paragraph.text.strip()if not current_text or len(current_text) + len(section) + 1 <= max_length:current_text += " " + sectionelse:period_index = current_text.rfind('。')if period_index != -1:period_text = current_text[:period_index+1].strip()if period_text:result.append((os.path.basename(docx_path),period_text))current_text = current_text[period_index+1:] + sectionelse:current_text = current_text.strip()if current_text:result.append((os.path.basename(docx_path),current_text))current_text = sectionif current_text.strip():result.append((os.path.basename(docx_path),current_text.strip()))output_path = os.path.join(os.path.dirname(pdf_file_path), os.path.basename(pdf_file_path).split(".")[0] + "_pdf2docx_"+ ".csv")with open(output_path, 'w', newline='', encoding='utf-8') as csvfile:csvwriter = csv.writer(csvfile)csvwriter.writerow(['filename', 'text'])csvwriter.writerows(result)print(f"{pdf_file_path} 处理完成")if __name__ == "__main__":pdf_file_path = "/path/to/your/xxx.pdf"pdf2docx_to_csv(pdf_file_path)

如果觉得好用就点个赞!

这篇关于【中文】PDF文档切分\切片\拆分最优方案-数据预处理阶段,为后续导入RAG向量数据库和ES数据库实现双路召回的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074419

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd