MDPO:Conditional Preference Optimization for Multimodal Large Language Models

本文主要是介绍MDPO:Conditional Preference Optimization for Multimodal Large Language Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MDPO: Conditional Preference Optimization for Multimodal Large Language Models

相关链接:arxiv
关键字:多模态大型语言模型偏好优化条件偏好优化幻觉减少

摘要

直接偏好优化(DPO)已被证明是大型语言模型(LLM)对齐的有效方法。近期的研究尝试将DPO应用于多模态场景,但发现难以实现一致的改进。通过比较实验,我们确定了多模态偏好优化中的无条件偏好问题,即模型在优化过程中忽略了图像条件。为了解决这个问题,我们提出了MDPO,这是一个多模态DPO目标,它通过同时优化图像偏好来防止过度优先考虑仅基于语言的偏好。此外,我们引入了一个奖励锚点,强制奖励对于选定的响应为正,从而避免了它们的似然度降低——这是相对偏好优化的一个内在问题。在不同大小的两个多模态LLM和三个广泛使用的基准测试上的实验表明,MDPO有效地解决了多模态偏好优化中的无条件偏好问题,并显著提高了模型性能,特别是在减少幻觉方面。

核心方法


MDPO(多模态直接偏好优化)提出了一种针对多模态场景的改进的偏好优化方法。核心方法包括以下几个关键点:

  1. 条件偏好优化:通过引入新的偏好对来强调图像与响应之间的关系,解决模型在偏好数据中忽略视觉信息的问题。

  2. 奖励锚点:通过正则化奖励为正,保持选定响应的似然度,避免在相对偏好优化中选定响应的似然度降低。

  3. 多模态偏好数据:MDPO在优化过程中同时考虑视觉和语言特征,以确保模型能够基于图像和问题文本的条件学习响应偏好。

  4. 实验验证:通过在不同规模的多模态LLM上进行实验,验证MDPO在减少幻觉和提高模型性能方面的有效性。

  5. 性能提升:MDPO通过条件偏好优化和奖励锚点,显著提高了模型对图像的理解能力,并减少了模型响应中的语言偏差。

实验说明

实验使用了两个不同大小的多模态LLM(Bunny-v1.0-3B和LLaVA-v1.5-7B),并在三个广泛使用的基准测试(MMHalBench、Object HalBench和AMBER)上进行了评估。实验结果表明MDPO在多模态场景中的表现优于标准DPO,特别是在减少幻觉方面。

以下是实验结果的Markdown表格展示:

基准测试指标Bunny-v1.0-3B (DPO)Bunny-v1.0-3B (MDPO)LLaVA-v1.5-7B (DPO)LLaVA-v1.5-7B (MDPO)
MMHalBench分数2.282.962.142.39
幻觉率0.560.420.650.54
Object HalBenchCHAIRs44.327.049.035.7
CHAIRi7.64.613.09.8
AMBER分数74.167.455.152.4
覆盖率58.937.734.524.5
幻觉率4.82.42.32.4

实验结果数据来源于论文中的实验部分,展示了MDPO在不同基准测试上的性能提升。数据要求反映了模型在减少幻觉和提高响应质量方面的表现。

结论

MDPO是一种针对多模态场景的偏好优化方法,它通过条件偏好优化和奖励锚点,有效地提高了多模态LLM的性能,并显著减少了幻觉。实验结果表明,MDPO在不同模型规模和数据规模上均能实现性能提升,证明了其在多模态偏好优化中的有效性和潜力。

整个论文的梳理保持了连贯性,并采用了技术性语言来描述方法和结果。对于深度学习的专业术语,如“大型语言模型(LLM)”和“直接偏好优化(DPO)”,保留了原文中的英文表述。

这篇关于MDPO:Conditional Preference Optimization for Multimodal Large Language Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074209

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

高精度打表-Factoring Large Numbers

求斐波那契数,不打表的话会超时,打表的话普通的高精度开不出来那么大的数组,不如一个int存8位,特殊处理一下,具体看代码 #include<stdio.h>#include<string.h>#define MAX_SIZE 5005#define LEN 150#define to 100000000/*一个int存8位*/int num[MAX_SIZE][LEN];void

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 密集检索需要学习具有区分性的文本嵌入,以表示查询和文档之间的语义关系。考虑到大语言模

ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法

Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF

阅读笔记--Guiding Attention in End-to-End Driving Models

作者:Diego Porres1, Yi Xiao1, Gabriel Villalonga1, Alexandre Levy1, Antonio M. L ́ opez1,2 出版时间:arXiv:2405.00242v1 [cs.CV] 30 Apr 2024 这篇论文研究了如何引导基于视觉的端到端自动驾驶模型的注意力,以提高它们的驾驶质量和获得更直观的激活图。 摘 要   介绍

【Derivation】Convex Optimization

Separation theorems and supporting hyperplanes(分离定理与支撑超平面)        Inner and outer polyhedral approximations.(内部与外部多面体逼近)        Let C belongs to Rn be a closed convex set.and suppose that x1,...xk a

[论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization

引言 为了理解CoSENT的loss,今天来读一下Circle Loss: A Unified Perspective of Pair Similarity Optimization。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度 s p s_p s