高精度打表-Factoring Large Numbers

2024-09-08 00:18

本文主要是介绍高精度打表-Factoring Large Numbers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

求斐波那契数,不打表的话会超时,打表的话普通的高精度开不出来那么大的数组,不如一个int存8位,特殊处理一下,具体看代码

#include<stdio.h>
#include<string.h>
#define MAX_SIZE 5005
#define LEN 150
#define to 100000000/*一个int存8位*/
int num[MAX_SIZE][LEN];
void get_num()
{int i,j,k;num[0][0]=0;/*第一个斐波那契数*/num[1][0]=1;/*第二个斐波那契数*/for(i=2;i<MAX_SIZE;i++){for(j=0;j<LEN;j++){num[i][j]=num[i-1][j]+num[i-2][j];}for(j=0;j<LEN-1;j++){/*开始进位*/num[i][j+1]+=num[i][j]/to;num[i][j]%=to;}}
}
void put_num(int n)
{int i,ok;printf("The Fibonacci number for %d is ",n);for(i=LEN-1,ok=0;i>=0;i--){if(ok){char number[10];int L;sprintf(number,"%d",num[n][i]);L=strlen(number);for(int k=0;k<8-L;k++) printf("0");printf("%s",number);}else if(num[n][i]!=0)/*从第一个不等于0的数开始数*/{printf("%d",num[n][i]);ok=1;}}
}
int main()
{/*freopen("out.txt","w",stdout);*/int n;get_num();while(scanf("%d",&n)!=EOF){if(!n) printf("The Fibonacci number for 0 is 0");elseput_num(n);printf("\n");}return 0;
}


这篇关于高精度打表-Factoring Large Numbers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146574

相关文章

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

计蒜客 Half-consecutive Numbers 暴力打表找规律

The numbers 11, 33, 66, 1010, 1515, 2121, 2828, 3636, 4545 and t_i=\frac{1}{2}i(i+1)t​i​​=​2​​1​​i(i+1), are called half-consecutive. For given NN, find the smallest rr which is no smaller than NN

高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

目录 高精度加法 高精度减法 高精度乘法 高精度加法 我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。 8 5 6+ 2 5 5-------1 1 1 1 加法进位: c[i] = a[i] + b[i];if(c[i] >=

leetcode#628. Maximum Product of Three Numbers

题目 Given an integer array, find three numbers whose product is maximum and output the maximum product. Example 1: Input: [1,2,3]Output: 6 Example 2: Input: [1,2,3,4]Output: 24 Note: The lengt

leetCode#448. Find All Numbers Disappeared in an Array

Description Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others appear once. Find all the elements of [1, n] inclusive that do not appear in this

高精度计算----减法运算(浮点型)

基于上一贴,修改减法运算适合于高精度浮点型计算。 因为减法比加法难度大一点,考虑的地方也要多一些,可能代码有欠缺,欢迎指出。 运算说明: 1、相减函数依旧没改变,包括上一贴的判断被减数与减数的大小函数也没变。 2、增加两个函数,取小数位数函数和结果处理(回归小数点)函数 3、与加法浮点高精度运算相比,这里改变较多的是结果处理函数,加法加完后,位数不减反增,而且最多增一位。减法会消失掉好多

高精度计算----减法运算

处理大数减法运算: 1、首先要判断被减数与减数哪个更大,再相应的带入减法函数去处理。具体的比较可以使用字符串的相关知识去比较。 2、相减要先对齐数组,依照减数的长度,执行相应的减法运算次数。 3、不需要借位相减的话,直接减去;需要的话,向前借一位,若前一位是0,则再前借(此时前一位的0变为10)。 测试程序效果如下:   以下代码包括相减函数,比较被减数减数函数,若有错误,请指出:

高精度加法,乘法,阶乘

#include <iostream>#include <map>#include <string>#include <algorithm>using namespace std;const int Max = 50000;string str1,str2;/***********乘法***********/void chenfa(){cin >> str1>>str2;int a