基于cocos2dx的RPG简单实用算法之3 - 多角色跟随阵型移动

2024-06-14 02:38

本文主要是介绍基于cocos2dx的RPG简单实用算法之3 - 多角色跟随阵型移动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



1. 确定到一个阵型中心对象。

也许是一个英雄,也可以是一个隐藏的对象。也就是下文种的 GridCenter

2. 预先计算号每个阵型“槽” 相对中心对象的 向量。

void GameControlManager::startGridMode()
{
    if(m_MainScene->heroList.empty())
        return;
    m_IsStartGridMode = true;
    Point GridCenter = findGridCenter();
    if(memberNumber == 1)
        return;
    else if(memberNumber == 2)
    {
        //     0
        //     1
        originRelativeVec[0] = Vec2(0,Grid_Slot_Radius);
        originRelativeVec[1] = Vec2(0,-Grid_Slot_Radius);
    }
    else if(memberNumber == 3)
    {
        Point firstPos = GridCenter + Vec2(0,Grid_Slot_Radius);
        Point secondPos = firstPos.rotateByAngle(GridCenter, CC_DEGREES_TO_RADIANS(-120));
        Point thirdPos = secondPos.rotateByAngle(GridCenter, CC_DEGREES_TO_RADIANS(-120));
        
        //      0
        //
        //  1       2
        originRelativeVec[0] = firstPos - GridCenter;
        originRelativeVec[1] = secondPos - GridCenter;
        originRelativeVec[2] = thirdPos - GridCenter;
    }
    else if(memberNumber == 4)
    {
        Point firstPos = GridCenter + Vec2(0,Grid_Slot_Radius);
        Point secondPos = firstPos.rotateByAngle(GridCenter, CC_DEGREES_TO_RADIANS(-90));
        Point thirdPos = secondPos.rotateByAngle(GridCenter, CC_DEGREES_TO_RADIANS(-90));
        Point fourthPos = thirdPos.rotateByAngle(GridCenter, CC_DEGREES_TO_RADIANS(-90));
        
        //     0          战士
        //  1     2     猎人  法师
        //     3          牧师
        originRelativeVec[0] = firstPos - GridCenter;
        originRelativeVec[1] = fourthPos - GridCenter;
        originRelativeVec[2] = secondPos - GridCenter;
        originRelativeVec[3] = thirdPos - GridCenter;
    }

    
    //认领slot位置
    int slotIndex = 0;
    int minSpeed = 999;
    for(auto hero : m_MainScene->heroList) //已经排序
    {
        if(!hero->getIsAlly() && !hero->getIsDead())
        {
            hero->setSlotIndex(slotIndex);
            slotIndex ++;
            
            auto actorInfo = GameData::getActorInfoFromMap(hero->getUnitID());
            if(actorInfo->speed < minSpeed)
                minSpeed = actorInfo->speed;
        }
    }

3. 根据一号英雄相对中心对象的方向来确定阵型初始朝向

    Point firstmanPos = m_MainScene->heroList.front()->getCenterPoint();
//    crossover_point(firstmanPos, GridCenter, )
    
    Vec2 heroVec = firstmanPos - GridCenter;
    heroVec.normalize();
    m_GridAngle = getDirectionByChief(heroVec);
    
    for(int index = 0; index < memberNumber; index++)
    {
        Vec2 cur = originRelativeVec[index];
        Point curPoint = cur + GridCenter;
        curPoint = curPoint.rotateByAngle(GridCenter, m_GridAngle);
        cur = curPoint - GridCenter;
        slotRelativeVec[index] = cur;
    }

4. 所有英雄各就各位

    for(auto hero : m_MainScene->heroList)
    {
        if(!hero->getIsAlly() && !hero->getIsDead())
        {
            Vec2 curVec = slotRelativeVec[hero->getSlotIndex()];
            Point des = GridCenter + curVec;
            hero->setDestinationPoint(des);
        }
    }
....
}


5.  当阵型移动,根据 ”中心对象“相对目的地位置 targetPos来更新阵型朝向角度GridAngle

再根据GridAngle刷新 每个槽的相对向量 cur

void GameControlManager::setGridDirection(Point targetPos)
{
    //更新阵型朝向
    auto GridCenter = getGridCenter();
    Vec2 chiefVec = targetPos - GridCenter;
    chiefVec.normalize();
    m_GridAngle = getDirectionByChief(chiefVec);
    for(int index = 0; index < memberNumber; index++)
    {
        Vec2 cur = originRelativeVec[index];
        Point curPoint = cur + m_gridObject->getPosition();
        curPoint = curPoint.rotateByAngle(m_gridObject->getPosition(),m_GridAngle); //在原基础上旋转
        cur = curPoint - m_gridObject->getPosition();
        slotRelativeVec[index] = cur;
    }
    m_gridObject->setRotation(CC_RADIANS_TO_DEGREES(-m_GridAngle));
}


6. 每一帧让角色移动到自己对应的槽

void GameControlManager::updateGridDirection()
{
            Point slot = getSlotPosByIndex(hero->getSlotIndex());
            if(hero->getCenterPoint().distance(slot) > getElasticRange())
            {
                hero->moveToward(slot);
            }
}


这篇关于基于cocos2dx的RPG简单实用算法之3 - 多角色跟随阵型移动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059139

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

回调的简单理解

之前一直不太明白回调的用法,现在简单的理解下 就按这张slidingmenu来说,主界面为Activity界面,而旁边的菜单为fragment界面。1.现在通过主界面的slidingmenu按钮来点开旁边的菜单功能并且选中”区县“选项(到这里就可以理解为A类调用B类里面的c方法)。2.通过触发“区县”的选项使得主界面跳转到“区县”相关的新闻列表界面中(到这里就可以理解为B类调用A类中的d方法

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

移动硬盘盒:便携与交互的完美结合 PD 充电IC

在数字化时代的浪潮中,数据已成为我们生活中不可或缺的一部分。随着数据的不断增长,人们对于数据存储的需求也在不断增加。传统的存储设备如U盘、光盘等,虽然具有一定的便携性,但在容量和稳定性方面往往难以满足现代人的需求。而移动硬盘,以其大容量、高稳定性和可移动性,成为了数据存储的优选方案。然而,单纯的移动硬盘在携带和使用上仍存在诸多不便,于是,移动硬盘盒应运而生,以其独特的便携性和交互性,成为了数据存储

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用。如果你看不懂,请留言。 完整代码: <!DOCTYPE html><html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><ti

VirtualBox中,虚拟系统文件VDI移动或者复制

在安装virtualbox以后有时需要复制,移动虚拟磁盘等操作,这些操作在vmware的虚拟机下面可以直接操作虚拟磁盘即可使用,但是在virtualbox环境 下每个VDI 文件都有一个唯一的uuid,而VirtualBox 不允许注册重复的uuid,所以直接复制的VDI文件是不能拿来使用的,我们就需要使用到virtualbox自带的管理命令来克隆一个VDI,这样通过命令克隆的VDI文件会重

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo