[深度学习]使用python转换pt并部署yolov10的tensorrt模型封装成类几句完成目标检测加速任务

本文主要是介绍[深度学习]使用python转换pt并部署yolov10的tensorrt模型封装成类几句完成目标检测加速任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【简单介绍】

使用Python将YOLOv10模型从PyTorch格式(.pt)转换为TensorRT格式,并通过封装成类来实现目标检测加速任务,是一个高效且实用的流程。以下是该过程的简要介绍:

  1. 模型转换
    • 利用官方提供导出命令,将训练好的YOLOv10模型(.pt格式)转换为tensorrt模型。
    • 利用NVIDIA的TensorRT框架,将ONNX模型转换为TensorRT引擎,以优化在NVIDIA GPU上的运行速度。

  1. TensorRT模型封装
    • 创建一个Python类,该类负责加载TensorRT引擎、处理输入数据、执行推理以及解析输出结果。
    • 封装类中包含模型加载、预处理、后处理以及推理执行等关键步骤,提供简洁的API供用户调用。
  2. 目标检测加速
    • TensorRT通过算子融合、量化、内核自动调整等技术,显著减少数据流通次数和显存使用,最大化并行操作,从而加速目标检测任务。
    • YOLOv10模型本身的轻量级设计和高效性能,在TensorRT的加持下,能够实现更快的推理速度和更高的检测精度。

通过上述流程,我们可以将YOLOv10模型高效地部署到NVIDIA GPU上,实现快速且准确的目标检测任务。

【实现流程】

1、首先安装好anaconda环境然后开始安装yolov10环境

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .

2、下载好tensorrt8.6.1.6版本安装包进行安装,并将tensorrt安装到yolov10环境中

3、导出模型

yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=engine half=True simplify opset=13 workspace=16
# or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine

您也可以直接使用我封装的转换接口:

    #pt转tensorrtdetector = Yolov10Detector(weights='weights/yolov10n.pt')detector.pt_to_engine()

 转换注意:由于tensorrt依赖于硬件,也就是不同电脑可能无法使用同一个tensorrt模型,因此需要在自己电脑本地首先转换pytorch模型为tensorrt模型,而不是直接拿别人转换好的tensorrt模型,否则可能会出现检测不到目标或者无法加载模型情况。

【封装调用】

推理图片:

    #推理图片detector = Yolov10Detector(weights='weights/yolov10n.engine')frame = cv2.imread('E:\person.jpg')result_list = detector.inference_image(frame)result_img = detector.draw_image(result_list, frame)cv2.imshow('frame', result_img)cv2.waitKey(0)

推理视频:

    #推理视频detector = Yolov10Detector(weights='weights/yolov10n.engine')detector.start_video(r'D:\car.mp4')

推理摄像头:

    #推理视频detector = Yolov10Detector(weights='weights/yolov10n.engine')detector.start_camera()

【效果展示】

【视频演示】

使用python转换pt并部署yolov10的tensorrt模型_哔哩哔哩_bilibili测试环境:torch==2.0.1tensorrt==8.6.1.6cuda==11.7.1cudnn==8.8.0更多信息请访问博文:, 视频播放量 5、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:ChatTTS增强版V2,批量导出srt,语速控制,情感控制,支持朗读数字,问题修复,使用纯opencv部署yolov8目标检测模型onnx,yolov8 TensorRT C++ C#部署,yolox+deepsort+pyqt5实现目标追踪结果演示,C#使用纯OpenCvSharp部署yolov8-pose姿态识别,使用C++部署yolov8的onnx和bytetrack实现目标追踪,[目标检测][数据集]张贴小广告数据集VOC-1725张介绍,基于yolov6+botsort+pyqt5实现的目标追踪视频演示,基于gradio开发的通用目标检测UI设计,yolox+bytetrack+pyqt5实现目标追踪结果演示icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Fy41187aC/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee

【测试环境】

torch==2.0.1 tensorrt==8.6.1.6 cuda==11.7.1 cudnn==8.8.0

【源码下载】 https://download.csdn.net/download/FL1623863129/89426162

这篇关于[深度学习]使用python转换pt并部署yolov10的tensorrt模型封装成类几句完成目标检测加速任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055625

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建