[深度学习]使用python转换pt并部署yolov10的tensorrt模型封装成类几句完成目标检测加速任务

本文主要是介绍[深度学习]使用python转换pt并部署yolov10的tensorrt模型封装成类几句完成目标检测加速任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【简单介绍】

使用Python将YOLOv10模型从PyTorch格式(.pt)转换为TensorRT格式,并通过封装成类来实现目标检测加速任务,是一个高效且实用的流程。以下是该过程的简要介绍:

  1. 模型转换
    • 利用官方提供导出命令,将训练好的YOLOv10模型(.pt格式)转换为tensorrt模型。
    • 利用NVIDIA的TensorRT框架,将ONNX模型转换为TensorRT引擎,以优化在NVIDIA GPU上的运行速度。

  1. TensorRT模型封装
    • 创建一个Python类,该类负责加载TensorRT引擎、处理输入数据、执行推理以及解析输出结果。
    • 封装类中包含模型加载、预处理、后处理以及推理执行等关键步骤,提供简洁的API供用户调用。
  2. 目标检测加速
    • TensorRT通过算子融合、量化、内核自动调整等技术,显著减少数据流通次数和显存使用,最大化并行操作,从而加速目标检测任务。
    • YOLOv10模型本身的轻量级设计和高效性能,在TensorRT的加持下,能够实现更快的推理速度和更高的检测精度。

通过上述流程,我们可以将YOLOv10模型高效地部署到NVIDIA GPU上,实现快速且准确的目标检测任务。

【实现流程】

1、首先安装好anaconda环境然后开始安装yolov10环境

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .

2、下载好tensorrt8.6.1.6版本安装包进行安装,并将tensorrt安装到yolov10环境中

3、导出模型

yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=engine half=True simplify opset=13 workspace=16
# or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine

您也可以直接使用我封装的转换接口:

    #pt转tensorrtdetector = Yolov10Detector(weights='weights/yolov10n.pt')detector.pt_to_engine()

 转换注意:由于tensorrt依赖于硬件,也就是不同电脑可能无法使用同一个tensorrt模型,因此需要在自己电脑本地首先转换pytorch模型为tensorrt模型,而不是直接拿别人转换好的tensorrt模型,否则可能会出现检测不到目标或者无法加载模型情况。

【封装调用】

推理图片:

    #推理图片detector = Yolov10Detector(weights='weights/yolov10n.engine')frame = cv2.imread('E:\person.jpg')result_list = detector.inference_image(frame)result_img = detector.draw_image(result_list, frame)cv2.imshow('frame', result_img)cv2.waitKey(0)

推理视频:

    #推理视频detector = Yolov10Detector(weights='weights/yolov10n.engine')detector.start_video(r'D:\car.mp4')

推理摄像头:

    #推理视频detector = Yolov10Detector(weights='weights/yolov10n.engine')detector.start_camera()

【效果展示】

【视频演示】

使用python转换pt并部署yolov10的tensorrt模型_哔哩哔哩_bilibili测试环境:torch==2.0.1tensorrt==8.6.1.6cuda==11.7.1cudnn==8.8.0更多信息请访问博文:, 视频播放量 5、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:ChatTTS增强版V2,批量导出srt,语速控制,情感控制,支持朗读数字,问题修复,使用纯opencv部署yolov8目标检测模型onnx,yolov8 TensorRT C++ C#部署,yolox+deepsort+pyqt5实现目标追踪结果演示,C#使用纯OpenCvSharp部署yolov8-pose姿态识别,使用C++部署yolov8的onnx和bytetrack实现目标追踪,[目标检测][数据集]张贴小广告数据集VOC-1725张介绍,基于yolov6+botsort+pyqt5实现的目标追踪视频演示,基于gradio开发的通用目标检测UI设计,yolox+bytetrack+pyqt5实现目标追踪结果演示icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Fy41187aC/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee

【测试环境】

torch==2.0.1 tensorrt==8.6.1.6 cuda==11.7.1 cudnn==8.8.0

【源码下载】 https://download.csdn.net/download/FL1623863129/89426162

这篇关于[深度学习]使用python转换pt并部署yolov10的tensorrt模型封装成类几句完成目标检测加速任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055625

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了