Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

本文主要是介绍Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯正向运动学几何矩阵,Python虚拟机器人模拟动画二连杆平面机械臂 | 🎯 逆向运动学几何矩阵,Python虚拟机器人模拟动画三连杆平面机械臂 | 🎯微分运动学数学形态,Python模拟近似结果 | 🎯欧拉-拉格朗日动力学数学形态,Python模拟机器人操纵器推导的运动方程有效性 | 🎯运动规划算法,Python虚拟机器人和摄像头模拟离线运动规划算法 | 🎯移动导航卡尔曼滤波算法及其它方法,Python虚拟机器人模拟可检测和可磕碰 | 🎯混合动力控制微分数学形态,Python虚拟机器人模拟比例微分积分和逆动态控制 | 🎯阻抗控制,Python模拟二联(三联动)。

🎯 库卡机器人模拟 ,库卡实体机器人对象检测和颜色分割拾取和放置物体 | 🎯 C#远程测试虚拟机器人 | 🎯虚拟机器人从三维文件创建自定义模型。

🎯Cpp(Python)和MATLAB差动驱动ROS Raspberry Pi全功能机器人原型。

🍇Python逆动力学算法

逆动力学是指计算运动中的力。给定配置 q q q、广义速度 q ˙ \dot{ q } q˙ 和广义加速度 q ¨ \ddot{ q } q¨,相当于找到关节扭矩 τ \tau τ 和接触力 f ext  f ^{\text {ext } } fext  使得运动约束方程得到满足:
M ( q ) q ¨ + q ˙ ⊤ C ( q ) q ˙ = S ⊤ τ + τ g ( q ) + τ est  + J ( q ) ⊤ f ext  J ( q ) q ¨ + q ˙ ⊤ H ( q ) q ˙ = 0 \begin{aligned} M ( q ) \ddot{ q }+\dot{ q }^{\top} C ( q ) \dot{ q } & = S ^{\top} \tau + \tau _g( q )+ \tau ^{\text {est }}+ J ( q )^{\top} f ^{\text {ext }} \\ J ( q ) \ddot{ q }+\dot{ q }^{\top} H ( q ) \dot{ q } & = 0 \end{aligned} M(q)q¨+q˙C(q)q˙J(q)q¨+q˙H(q)q˙=Sτ+τg(q)+τest +J(q)fext =0

逆动力学的数学函数如下:
( τ , f e x t ) = ID ⁡ ( q , q ˙ , q ¨ ) \left(\tau, f ^{e x t}\right)=\operatorname{ID}( q , \dot{ q }, \ddot{ q }) (τ,fext)=ID(q,q˙,q¨)
当我们的线性系统完全确定时,该函数定义明确,例如对于具有六个自由度的手臂,但对于在多个接触下的移动机器人,该函数通常是欠确定的。在这种情况下,我们可以将外力的计算转移到例如接触模型,并仅计算关节扭矩:
τ = RNEA ⁡ ( q , q ˙ , q ¨ , f est  ) \tau =\operatorname{RNEA}\left( q , \dot{ q }, \ddot{ q }, f ^{\text {est }}\right) τ=RNEA(q,q˙,q¨,fest )
递归牛顿-欧拉算法为我们提供了一种实现此功能的有效方法。该算法分为两步:前向传递,主要是二阶正向运动学,然后是后向传递,计算力和关节扭矩。

此算法第一遍计算主体速度 v i v _i vi 和加速度 a i a _i ai。从运动树的根 i = 0 i=0 i=0 开始,物体 i i i 的运动 v i , a i v _i, a _i vi,ai 是根据运动 v λ ( i ) , a λ ( i ) v _{\lambda(i)}, a _{\lambda( i)} vλ(i),aλ(i) 其父体 λ ( i ) \lambda(i) λ(i) 的分量,加上它们之间的关节的运动 q ˙ i , q ¨ i \dot{ q }_i, \ddot{ q }_i q˙i,q¨i​ 引起的分量。让我们从主体速度开始:
v i = i X λ ( i ) v λ ( i ) + S i q ˙ i v _i={ }^i X _{\lambda(i)} v _{\lambda(i)}+ S _i \dot{ q }_i vi=iXλ(i)vλ(i)+Siq˙i
在此方程中, i X λ ( i ) { }^i X _{\lambda(i)} iXλ(i) 是从 λ ( i ) \lambda(i) λ(i) i i i 的 Plücker 变换, S i S _i Si 是关节的运动子空间矩阵。请注意, q ˙ i ∈ R k \dot{ q }_i \in R ^k q˙iRk 是关节的速度,例如对于浮动底座(又名自由飞行器)关节, k = 6 k=6 k=6,对于球形关节, k = 2 k=2 k=2,对于旋转关节或棱柱关节, k = 1 k=1 k=1。无论如何, q ˙ i \dot{ q }_i q˙i 不是广义速度向量 q ˙ \dot{ q } q˙ i th  i^{\text {th }} ith  分量(这没有意义,因为 i i i 是关节的索引,而向量 q ˙ \dot{ q } q˙ 按自由度索引)。因此,运动子空间矩阵的维度为 6 × k 6 \times k 6×k

接下来,让我们假设一个“常见”关节(旋转关节、棱柱关节、螺旋关节、圆柱关节、平面关节、球形关节、自由飞行关节),这样运动子空间矩阵的视在时间导数为零。除非你处理的是不同的关节,否则不要介意这句话。 然后,在前向传递过程中从父关节计算出的主体加速度为:
a i = i X λ ( i ) a λ ( i ) + S i q ¨ i + v i × S i q ˙ i a _i={ }^i X _{\lambda(i)} a _{\lambda(i)}+ S _i \ddot{ q }_i+ v _i \times S _i \dot{ q }_i ai=iXλ(i)aλ(i)+Siq¨i+vi×Siq˙i
到目前为止,该正向传递是二阶正向运动学。一路上我们要计算的最后一件事是由主体运动 v i v _i vi a i a _i ai​产生的主体惯性力:
f i = I i a i + v i × ∗ I i v i − f i est  f _i= I _i a _i+ v _i \times{ }^* I _i v _i- f _i^{\text {est }} fi=Iiai+vi×Iivifiest 
我们将在向后传递期间更新这些力向量。请注意,由于它们是力矢量,因此我们的符号意味着 f i ext  f _i^{\text {ext }} fiext  也是一个物体力矢量。如果外力在惯性系中表示为 0 f i ext  { }^0 f _i^{\text {ext }} 0fiext ,则可以通过以 f i = i X 0 0 f i e x t f _i={ }^i X _0{ }^0 f _i^{e x t} fi=iX00fiext​ 映射到主体框架 。

此算法的第二遍计算体积力。从运动树的叶节点开始,物体 i i i 的广义力 f i f _i fi 被添加到迄今为止为其父代 λ ( i ) \lambda(i) λ(i) 计算的力 f λ ( i ) f _{\lambda(i)} fλ(i)​ :
f λ ( i ) = f λ ( i ) + i X λ ( i ) ⊤ f i f _{\lambda(i)}= f _{\lambda(i)}+{ }^i X _{\lambda(i)}^{\top} f _i fλ(i)=fλ(i)+iXλ(i)fi
一旦计算出主体 i i i 上的广义力 f i f _i fi,我们就可以通过沿关节轴投影该 6D 主体矢量来获得相应的关节扭矩 τ i \tau _i τi​:
τ i = S i ⊤ f i \tau _i= S _i^{\top} f _i τi=Sifi
对于旋转关节, S i S _i Si 是一个 6 × 1 6 \times 1 6×1 列向量,因此我们以单个数字 τ i = S i ⊤ f i \tau_i= S _i^{\top} f _i τi=Sifi 结尾:关节伺服系统应提供的驱动扭矩提供跟踪 ( q , q ˙ , q ¨ , f e x t ) \left( q , \dot{ q }, \ddot{ q }, f ^{e x t}\right) (q,q˙,q¨,fext)。所有其他组件对应于我们的旋转关节的五度约束,并将由关节的力学被动提供。

现在让我们通过在伪 Python 中执行相同的操作来明确更多的事情。我们的(此算法)函数原型是:

def rnea(q, qd, qdd, f_ext):pass

请注意,q 是每个关节的广义坐标列表,而不是平面数组,其他参数也是如此。特别是,f_ext 是体力矢量 f i ext  f _i^{\text {ext }} fiext  的列表。使用 Python 类型注释,我们的原型将如下所示:

from typing import Listimport numpy as npdef rnea(q: List[np.ndarray],qd: List[np.ndarray],qdd: List[np.ndarray],f_ext: List[np.ndarray],
) -> List[np.ndarray]:pass

这种额外的结构允许更通用的关节,例如球形关节(不常见)或用于移动机器人浮动底座的自由飞行关节(常见)。如果所有关节都是旋转的,那么所有类型都将合并为平面阵列。

让我们用 v 0 = 0 v _0= 0 v0=0 表示运动树根链接的空间速度,用 a 0 a _0 a0 表示其空间加速度。我们将它们分别初始化为零和标准重力加速度:

n = len(qd) - 1  # number of links == number of joints - 1
v = [np.empty((6,)) for i in range(n + 1)]
a = [np.empty((6,)) for i in range(n + 1)]
f = [np.empty((6,)) for i in range(n + 1)]
tau = [np.empty(qd[i].shape) for i in range(n + 1)]
v[0] = np.zeros((6,))
a[0] = -np.array([0.0, 0.0, -9.81])

我们继续前向传递,范围从链接 i = 1 i=1 i=1 到树的最后一个链接 i = n i=n i=n

for i in range(1, n + 1):p = lambda_[i]  # p for "parent"X_p_to_i[i], S[i], I[i] = compute_joint(joint_type[i], q[i])v[i] = X_p_to_i[i] * v[p] + S[i] * qd[i]a[i] = X_p_to_i[i] * a[p] + S[i] * qdd[i] + spatial_cross(v[i], S[i] * qd[i])f[i] = I[i] * a[i] + spatial_cross_dual(v[i], I[i] * v[i]) - f_ext[i]

向后传递以相反的顺序遍历相同的范围:

for i in range(n, 0, -1):p = lambda_[i]tau[i] = S[i].T * f[i]f[p] += X_p_to_i[i].T * f[i]

最终,我们得到:

def rnea(q, qd, qdd, f_ext):n = len(qd)v = [np.empty((6,)) for i in range(n + 1)]a = [np.empty((6,)) for i in range(n + 1)]f = [np.empty((6,)) for i in range(n + 1)]tau = [np.empty(qd[i].shape) for i in range(n + 1)]v[0] = np.zeros((6,))a[0] = -np.array([0.0, 0.0, -9.81])for i in range(1, n + 1):p = lambda_[i]X_p_to_i[i], S[i], I[i] = compute_joint(joint_type[i], q[i])v[i] = X_p_to_i[i] * v[p] + S[i] * qd[i]a[i] = X_p_to_i[i] * a[p] + S[i] * qdd[i] + spatial_cross(v[i], S[i] * qd[i])f[i] = I[i] * a[i] + spatial_cross_dual(v[i], I[i] * v[i]) - f_ext[i]for i in range(n, 0, -1):p = lambda_[i]tau[i] = S[i].T * f[i]f[p] += X_p_to_i[i].T * f[i]return tau

长度不同的数组列表通常是刚体动力学库或模拟器中的内部结构。从此类列表到平面数组结构的映射称为关节,并决定如何表示球形和自由飞行关节的方向。

👉参阅:亚图跨际

这篇关于Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037856

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi