Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

本文主要是介绍Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯正向运动学几何矩阵,Python虚拟机器人模拟动画二连杆平面机械臂 | 🎯 逆向运动学几何矩阵,Python虚拟机器人模拟动画三连杆平面机械臂 | 🎯微分运动学数学形态,Python模拟近似结果 | 🎯欧拉-拉格朗日动力学数学形态,Python模拟机器人操纵器推导的运动方程有效性 | 🎯运动规划算法,Python虚拟机器人和摄像头模拟离线运动规划算法 | 🎯移动导航卡尔曼滤波算法及其它方法,Python虚拟机器人模拟可检测和可磕碰 | 🎯混合动力控制微分数学形态,Python虚拟机器人模拟比例微分积分和逆动态控制 | 🎯阻抗控制,Python模拟二联(三联动)。

🎯 库卡机器人模拟 ,库卡实体机器人对象检测和颜色分割拾取和放置物体 | 🎯 C#远程测试虚拟机器人 | 🎯虚拟机器人从三维文件创建自定义模型。

🎯Cpp(Python)和MATLAB差动驱动ROS Raspberry Pi全功能机器人原型。

🍇Python逆动力学算法

逆动力学是指计算运动中的力。给定配置 q q q、广义速度 q ˙ \dot{ q } q˙ 和广义加速度 q ¨ \ddot{ q } q¨,相当于找到关节扭矩 τ \tau τ 和接触力 f ext  f ^{\text {ext } } fext  使得运动约束方程得到满足:
M ( q ) q ¨ + q ˙ ⊤ C ( q ) q ˙ = S ⊤ τ + τ g ( q ) + τ est  + J ( q ) ⊤ f ext  J ( q ) q ¨ + q ˙ ⊤ H ( q ) q ˙ = 0 \begin{aligned} M ( q ) \ddot{ q }+\dot{ q }^{\top} C ( q ) \dot{ q } & = S ^{\top} \tau + \tau _g( q )+ \tau ^{\text {est }}+ J ( q )^{\top} f ^{\text {ext }} \\ J ( q ) \ddot{ q }+\dot{ q }^{\top} H ( q ) \dot{ q } & = 0 \end{aligned} M(q)q¨+q˙C(q)q˙J(q)q¨+q˙H(q)q˙=Sτ+τg(q)+τest +J(q)fext =0

逆动力学的数学函数如下:
( τ , f e x t ) = ID ⁡ ( q , q ˙ , q ¨ ) \left(\tau, f ^{e x t}\right)=\operatorname{ID}( q , \dot{ q }, \ddot{ q }) (τ,fext)=ID(q,q˙,q¨)
当我们的线性系统完全确定时,该函数定义明确,例如对于具有六个自由度的手臂,但对于在多个接触下的移动机器人,该函数通常是欠确定的。在这种情况下,我们可以将外力的计算转移到例如接触模型,并仅计算关节扭矩:
τ = RNEA ⁡ ( q , q ˙ , q ¨ , f est  ) \tau =\operatorname{RNEA}\left( q , \dot{ q }, \ddot{ q }, f ^{\text {est }}\right) τ=RNEA(q,q˙,q¨,fest )
递归牛顿-欧拉算法为我们提供了一种实现此功能的有效方法。该算法分为两步:前向传递,主要是二阶正向运动学,然后是后向传递,计算力和关节扭矩。

此算法第一遍计算主体速度 v i v _i vi 和加速度 a i a _i ai。从运动树的根 i = 0 i=0 i=0 开始,物体 i i i 的运动 v i , a i v _i, a _i vi,ai 是根据运动 v λ ( i ) , a λ ( i ) v _{\lambda(i)}, a _{\lambda( i)} vλ(i),aλ(i) 其父体 λ ( i ) \lambda(i) λ(i) 的分量,加上它们之间的关节的运动 q ˙ i , q ¨ i \dot{ q }_i, \ddot{ q }_i q˙i,q¨i​ 引起的分量。让我们从主体速度开始:
v i = i X λ ( i ) v λ ( i ) + S i q ˙ i v _i={ }^i X _{\lambda(i)} v _{\lambda(i)}+ S _i \dot{ q }_i vi=iXλ(i)vλ(i)+Siq˙i
在此方程中, i X λ ( i ) { }^i X _{\lambda(i)} iXλ(i) 是从 λ ( i ) \lambda(i) λ(i) i i i 的 Plücker 变换, S i S _i Si 是关节的运动子空间矩阵。请注意, q ˙ i ∈ R k \dot{ q }_i \in R ^k q˙iRk 是关节的速度,例如对于浮动底座(又名自由飞行器)关节, k = 6 k=6 k=6,对于球形关节, k = 2 k=2 k=2,对于旋转关节或棱柱关节, k = 1 k=1 k=1。无论如何, q ˙ i \dot{ q }_i q˙i 不是广义速度向量 q ˙ \dot{ q } q˙ i th  i^{\text {th }} ith  分量(这没有意义,因为 i i i 是关节的索引,而向量 q ˙ \dot{ q } q˙ 按自由度索引)。因此,运动子空间矩阵的维度为 6 × k 6 \times k 6×k

接下来,让我们假设一个“常见”关节(旋转关节、棱柱关节、螺旋关节、圆柱关节、平面关节、球形关节、自由飞行关节),这样运动子空间矩阵的视在时间导数为零。除非你处理的是不同的关节,否则不要介意这句话。 然后,在前向传递过程中从父关节计算出的主体加速度为:
a i = i X λ ( i ) a λ ( i ) + S i q ¨ i + v i × S i q ˙ i a _i={ }^i X _{\lambda(i)} a _{\lambda(i)}+ S _i \ddot{ q }_i+ v _i \times S _i \dot{ q }_i ai=iXλ(i)aλ(i)+Siq¨i+vi×Siq˙i
到目前为止,该正向传递是二阶正向运动学。一路上我们要计算的最后一件事是由主体运动 v i v _i vi a i a _i ai​产生的主体惯性力:
f i = I i a i + v i × ∗ I i v i − f i est  f _i= I _i a _i+ v _i \times{ }^* I _i v _i- f _i^{\text {est }} fi=Iiai+vi×Iivifiest 
我们将在向后传递期间更新这些力向量。请注意,由于它们是力矢量,因此我们的符号意味着 f i ext  f _i^{\text {ext }} fiext  也是一个物体力矢量。如果外力在惯性系中表示为 0 f i ext  { }^0 f _i^{\text {ext }} 0fiext ,则可以通过以 f i = i X 0 0 f i e x t f _i={ }^i X _0{ }^0 f _i^{e x t} fi=iX00fiext​ 映射到主体框架 。

此算法的第二遍计算体积力。从运动树的叶节点开始,物体 i i i 的广义力 f i f _i fi 被添加到迄今为止为其父代 λ ( i ) \lambda(i) λ(i) 计算的力 f λ ( i ) f _{\lambda(i)} fλ(i)​ :
f λ ( i ) = f λ ( i ) + i X λ ( i ) ⊤ f i f _{\lambda(i)}= f _{\lambda(i)}+{ }^i X _{\lambda(i)}^{\top} f _i fλ(i)=fλ(i)+iXλ(i)fi
一旦计算出主体 i i i 上的广义力 f i f _i fi,我们就可以通过沿关节轴投影该 6D 主体矢量来获得相应的关节扭矩 τ i \tau _i τi​:
τ i = S i ⊤ f i \tau _i= S _i^{\top} f _i τi=Sifi
对于旋转关节, S i S _i Si 是一个 6 × 1 6 \times 1 6×1 列向量,因此我们以单个数字 τ i = S i ⊤ f i \tau_i= S _i^{\top} f _i τi=Sifi 结尾:关节伺服系统应提供的驱动扭矩提供跟踪 ( q , q ˙ , q ¨ , f e x t ) \left( q , \dot{ q }, \ddot{ q }, f ^{e x t}\right) (q,q˙,q¨,fext)。所有其他组件对应于我们的旋转关节的五度约束,并将由关节的力学被动提供。

现在让我们通过在伪 Python 中执行相同的操作来明确更多的事情。我们的(此算法)函数原型是:

def rnea(q, qd, qdd, f_ext):pass

请注意,q 是每个关节的广义坐标列表,而不是平面数组,其他参数也是如此。特别是,f_ext 是体力矢量 f i ext  f _i^{\text {ext }} fiext  的列表。使用 Python 类型注释,我们的原型将如下所示:

from typing import Listimport numpy as npdef rnea(q: List[np.ndarray],qd: List[np.ndarray],qdd: List[np.ndarray],f_ext: List[np.ndarray],
) -> List[np.ndarray]:pass

这种额外的结构允许更通用的关节,例如球形关节(不常见)或用于移动机器人浮动底座的自由飞行关节(常见)。如果所有关节都是旋转的,那么所有类型都将合并为平面阵列。

让我们用 v 0 = 0 v _0= 0 v0=0 表示运动树根链接的空间速度,用 a 0 a _0 a0 表示其空间加速度。我们将它们分别初始化为零和标准重力加速度:

n = len(qd) - 1  # number of links == number of joints - 1
v = [np.empty((6,)) for i in range(n + 1)]
a = [np.empty((6,)) for i in range(n + 1)]
f = [np.empty((6,)) for i in range(n + 1)]
tau = [np.empty(qd[i].shape) for i in range(n + 1)]
v[0] = np.zeros((6,))
a[0] = -np.array([0.0, 0.0, -9.81])

我们继续前向传递,范围从链接 i = 1 i=1 i=1 到树的最后一个链接 i = n i=n i=n

for i in range(1, n + 1):p = lambda_[i]  # p for "parent"X_p_to_i[i], S[i], I[i] = compute_joint(joint_type[i], q[i])v[i] = X_p_to_i[i] * v[p] + S[i] * qd[i]a[i] = X_p_to_i[i] * a[p] + S[i] * qdd[i] + spatial_cross(v[i], S[i] * qd[i])f[i] = I[i] * a[i] + spatial_cross_dual(v[i], I[i] * v[i]) - f_ext[i]

向后传递以相反的顺序遍历相同的范围:

for i in range(n, 0, -1):p = lambda_[i]tau[i] = S[i].T * f[i]f[p] += X_p_to_i[i].T * f[i]

最终,我们得到:

def rnea(q, qd, qdd, f_ext):n = len(qd)v = [np.empty((6,)) for i in range(n + 1)]a = [np.empty((6,)) for i in range(n + 1)]f = [np.empty((6,)) for i in range(n + 1)]tau = [np.empty(qd[i].shape) for i in range(n + 1)]v[0] = np.zeros((6,))a[0] = -np.array([0.0, 0.0, -9.81])for i in range(1, n + 1):p = lambda_[i]X_p_to_i[i], S[i], I[i] = compute_joint(joint_type[i], q[i])v[i] = X_p_to_i[i] * v[p] + S[i] * qd[i]a[i] = X_p_to_i[i] * a[p] + S[i] * qdd[i] + spatial_cross(v[i], S[i] * qd[i])f[i] = I[i] * a[i] + spatial_cross_dual(v[i], I[i] * v[i]) - f_ext[i]for i in range(n, 0, -1):p = lambda_[i]tau[i] = S[i].T * f[i]f[p] += X_p_to_i[i].T * f[i]return tau

长度不同的数组列表通常是刚体动力学库或模拟器中的内部结构。从此类列表到平面数组结构的映射称为关节,并决定如何表示球形和自由飞行关节的方向。

👉参阅:亚图跨际

这篇关于Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037856

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及