针对AlGaN/GaN高电子迁移率晶体管的显式表面电势计算和紧凑电流模型

本文主要是介绍针对AlGaN/GaN高电子迁移率晶体管的显式表面电势计算和紧凑电流模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:An Explicit Surface Potential Calculation and Compact Current Model for AlGaN/GaN HEMTs(EDL 15年)

在这里插入图片描述在这里插入图片描述

摘要

在本文中,我们提出了一种新的紧凑模型,用于基于费米能级和表面电位的显式解来描述AlGaN/GaN高电子迁移率晶体管。该模型计算简单,且在预测表面电位和电流-电压特性方面具有高精度,非常适合电路仿真应用。这种基于表面电位的紧凑模型还考虑了温度依赖的自由载流子迁移率,从而考虑了自加热效应。该模型已经通过数值结果和广泛偏置条件下的测量数据进行了验证。

关键词:AlGaN/GaN高电子迁移率晶体管(HEMT)、漏电流、紧凑模型、自热效应。

文章的研究内容

  1. 提出了一种新的紧凑模型,用于描述AlGaN/GaN高电子迁移率晶体管(HEMTs)的特性。

  2. 该模型基于对费米能级和表面电位的显式求解,计算简单且精度高。

  3. 模型考虑了自热效应,通过温度依赖的自由载流子迁移率来描述。

  4. 该模型对预测AlGaN/GaN HEMT的表面电位和电流-电压特性都很理想,适用于电路仿真。

  5. 该模型的性能已经通过数值结果和测量数据在广泛偏置条件下进行了验证。

这篇文章提出了一种新的紧凑模型,能够准确、高效地描述AlGaN/GaN HEMT的特性,对GaN器件和电路的设计和仿真很有应用价值。

文章的研究方法

  1. 提出了一种新的显式求解方法来计算AlGaN/GaN HEMT的费米能级和表面电势。与之前的模型相比,这种方法更加直接和基于物理原理。

  2. 对于强2DEG区域,作者得到了费米能级的精确立方方程解,计算误差只有10-6 V量级。

  3. 这种计算方法是非迭代的,因此计算过程更加简单和高效。

  4. 基于这种显式求解方法,作者开发了一个包含自加热效应的紧凑模型,能够预测AlGaN/GaN HEMT的电流-电压特性。

  5. 作者通过数值仿真结果和实测数据对该模型在广泛偏置条件下进行了验证。

这篇文章的主要研究方法包括:1) 提出新的显式求解方法; 2) 基于此开发紧凑模型; 3) 通过仿真和测试数据进行验证。这些方法保证了该模型既准确又高效。

文章的创新点

  1. 提出了一种新的显式求解方法来计算AlGaN/GaN HEMT的费米能级和表面电势,相比之前的模型更加直接和基于物理原理。

  2. 对于强2DEG区域,得到了费米能级的精确立方方程解,计算误差只有10-6 V量级,大幅提高了计算精度。

  3. 这种显式求解方法是非迭代的,计算过程更加简单和高效,非常适合用于电路仿真。

  4. 基于这种显式表面电位计算方法,作者开发了一个新的紧凑模型,能够准确预测AlGaN/GaN HEMT的电流-电压特性,同时还考虑了自热效应。

  5. 该模型已经通过数值仿真结果和广泛测试条件下的实验数据进行了全面验证,证明了其准确性和适用性。

这篇论文的主要创新点在于提出了一种新颖的显式表面电位计算方法,并基于此开发了一个高精度、高计算效率的AlGaN/GaN HEMT紧凑模型,对GaN器件和电路的设计开发具有重要意义。

文章的结论

  1. 提出了一种新的基于显式表面电位计算的紧凑模型,用于描述AlGaN/GaN高电子迁移率晶体管(HEMT)的特性。

  2. 该模型采用了一种精确、非迭代的方法来求解费米能级和表面电势,大大提高了计算效率和精度。

  3. 该紧凑模型不仅能准确预测HEMT的电流-电压特性,还考虑了自热效应,通过温度依赖的载流子迁移率进行建模。

  4. 该模型的性能已经通过与数值模拟结果和广泛实验数据的对比验证,证明了其准确性和适用性。

  5. 这种基于显式表面电位计算的紧凑模型非常适合用于电路仿真,为GaN功率器件和集成电路的设计提供了有力的建模工具。

这篇论文提出了一种创新的紧凑模型,在计算效率、精度以及对自热效应的描述等方面都有显著优势,对GaN器件和电路的建模和仿真具有重要的应用价值。

这篇关于针对AlGaN/GaN高电子迁移率晶体管的显式表面电势计算和紧凑电流模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033174

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <