电流专题

安科瑞ASJ漏电流继电器在轨道交通地铁车站配电系统中的应用

应用背景 城市轨道交通设备门类复杂、数量庞大、分布广泛,在长期连续运行时存在火灾隐患。在国内外的地铁火灾中,因电气原因引起的火灾占比最大,达到37%,其中供电线路的漏电流更是造成电气火灾的重要因素。消防部门、行业专家往往要求地铁车站设置电气火灾监控系统,但在地铁监控防范措施中,泄漏电流的监测并不完善,现有的泄漏电流监测系统存在误报现象,使得配电系统漏电保护 频繁跳闸。为此,查找频繁误报警原因,采

用于充电桩的B型剩余电流保护器的设计

摘要       对含有充电桩的充电系统漏电原理、特征和保护安装位置进行了分析,并提出用于充电桩的B型剩余电流保护器的一种设计方案,通过双磁芯及对应的拓扑结构实现剩余电流的检测。分析了不同拓扑结构对应类型的剩余电流实现脱扣的机理,对直流剩余电流的检测采用磁调制技术,对其余类型剩余电流提出不进行波形识别、直接整流的电流检测方案。根据不同拓扑结构检测的电流类型,提出上方磁芯选择磁滞回线扁平、高磁导率

屏幕录制总有滋滋声怎么办?解决录屏电流声大问题技巧与工具推荐

在进行屏幕录制时,电流声往往成为影响视频质量的罪魁祸首。无论是在线教学、游戏直播还是制作教程视频,清晰的音质都是必不可少的。然而,许多用户在录制过程中会遇到电流声较大的问题,这不仅影响了视频的专业性,也降低了观众的观看体验。本文将为您提供几种有效的解决方法,并在文末推荐一款强大的录屏工具——嗨格式录屏大师。 1. 选择安静的录制环境 首先,确保您的录制环境尽可能安静。大多数笔记本电脑使

开绕组永磁电机驱动系统零序电流抑制策略研究(7)——基于零矢量重新分布的120°矢量解耦/中间六边形调制零序电流抑制策略

1.前言 很久没有更新过开绕组电机的仿真了。在一年前发了开绕组的各种调制策略。开绕组电机最常见的两种解耦调制就是120°矢量解耦/中间六边形调制和180°矢量解耦/最大六边形调制。 我当时想的是,180°解耦调制/最大六边形调制的电压利用率最高,所以我就一直用这个调制方式。但是近年来做开绕组电机的基本都是华科的老师,而他们都采用了120°调制/中间六边形调制。 我之前是做了120°解耦调

电路基础 ---- 电压源、电流源、受控电源

1 电压源 定义:两端电压总是保持定值,与流过它的电流无关 1.1 分析 对于如下电路: 当 R → 0 R\to 0 R→0(短路)时, i = ∞ i=\infty i=∞(会烧坏电压源)当 R → ∞ R\to\infty R→∞(开路)时, i = 0 i=0 i=0 1.2 结论 ①电压源两端电压由电源本身决定,与外电路无关,与流过的电流无关 ②通过电压源的电流由电压源和

恒电流间歇滴定法 (GITT) 测试教程

文章目录 恒电流间歇滴定法 (GITT) 测试教程1. GITT 测试原理2. 实验准备2.1 设备与材料2.2 配置实验装置 3. GITT 测试步骤3.1 设定测试参数3.2 执行 GITT 测试 4. 数据分析4.1 电压变化分析4.2 扩散系数计算4.3 电荷传输阻抗分析 5. 总结与应用 恒电流间歇滴定法 (GITT) 测试教程 恒电流间歇滴定法(Ga

MAX811LEUS+T 具有低电源电流 带有手动复位输入 微处理器电压监测器

MAX811LEUS+T低功耗微处理器(µP)监控电路用于监控µP和数字系统中的电源。当与5V供电或3V供电电路一起使用时,它们无需外部元件,也不用进行调整,可实现非常可靠的低成本电路。MAX811LEUS+T还提供去抖手动复位输入。 MAX811LEUS+T执行单一功能:每当VCC电源电压下降到预设阈值以下,它们都会将复位信号置位,并在VCC上升到复位阈值以上后将该信号保持置位状态至少140ms

电流的速度和电子定向移动的速度有什么关系

电流的速度和电子定向移动的速度之间存在重要的区别,虽然它们是相关的概念。 1. 电流的传播速度(信号传播速度): 电流传播的速度通常接近光速。电流在导体中传播时,实际上是电场在导体中以接近光速的速度传播。这种传播速度取决于介质的性质,并且在理想条件下可以达到每秒几十万公里。这意味着,当你打开一个电路开关时,电信号几乎立即传播到整个电路。 2. 电子的定向移动速度(漂移速度): 电子在导体中

惠海H4312 dcdc同步整流降压恒压IC 30V 40V转3.3V/5V/12V小体积大电流单片机供电

1.产品描述 H4312是一种内置30V耐压MOS,并且能够实现精确恒压以及恒流的同步降压型 DC-DC 转换器: 支持 3.1A 持续输出电流输出电压可调,最大可支持 100%占空比;通过调节FB 端口的分压电阻,可以输出2.5V到 24V的稳定电压。 H4312 采用高端电流模式的环路控制原理,实现了快速的动态响应。H4312工作开关频率为 170kHz,具有良好的 EMI 特性。H43

电流倒灌问题

倒灌就是电流流进IC内部,电流总是流入电势低的地方。 比如说电压源,一般都是输出电流,但是如果有另一个电源同时存在,并且电势高于这个电源,电流就会流入这个电源,称为倒灌,类似电池,既可以充电,也可以放电。 网络方案1: https://wenku.baidu.com/view/4bff402b0066f5335a81212e.html     方案2: http://xilinx

CAN通讯接口 8路电压电流模拟量采集模块DAM-C3054P

简介: DAM-C3054P为8路差分模拟量采集模块,16位AD,CAN通讯接口,支持CAN2.0A标准帧格式,支持CAN-OPEN协议。配备良好的人机交互界面,使用方便,性能稳定。 产品图片及尺寸: 指标参数:  注意: 1、采样速率:此参数指的是 ADC 芯片采集速度。模块 ADC 采集转换速率可配置 (100/200/500/1000sps),恢复出厂默认 100sp

大电流一体成型电感CSEB1350系列,助力实现DC-DC转换器小尺寸、高效率

DC-DC转换器 , 转换器 , 科达嘉 DC-DC转换器作为一种电压转换装置,在电子产品、电源系统、工业控制、新能源等领域广泛应用。。。 DC-DC转换器作为一种电压转换装置,在电子产品、电源系统、工业控制、新能源等领域广泛应用。随着各行业用户对DC-DC转换器性能和功能要求的不断提升,DC-DC转换器向高效率、多功能性、小型化、高可靠性等趋势发展。电感器作为DC-DC转换器的重要元件

VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南

VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南 电流反馈和电压反馈具有不同的应用优势。在很多应用中,CFB和VFB的差异并不明显。当今的许多高速CFB和VFB放大器在性能上不相上下,但各有其优缺点。本指南将考察与这两种拓扑结构相关的重要考虑因素。 VFB和CFB运算放大器的直流及运行考虑因素 VFB运算放大器 对于要求高开环增益、低失调电压和低偏置电流的精密低频应用,VFB运算放

电路仿真实战设计教程--平均电流控制原理与仿真实战教程

1.平均电流控制原理: 平均电流控制的方块图如下,其由外电路电压误差放大器作电压调整器产生电感电流命令信号,再利用电感电流与电流信号的误差经过一个电流误差放大器产生PWM所需的控制电压,最后由控制电压与三角波比较生成开关管的驱动信号。 2.电流环设计: 根据状态平均法: 忽略输入电压与输出电压的扰动:

不到3毛钱的SOT23和SOT89封装18V耐压低功耗高PSRR高精度LDO稳压芯片ME6231电流0.5A电压3.3V和1.8V

前言 SOT23-5封装ME6231外观和丝印 一款国产LDO,某些场合,要把1117扔了吧,SOT23封装,虽然不是最小,但也是够小的了。 参考价格:约0.25元 概述 ME6231 系列是以 CMOS 工艺制造的 18V 耐压、低功耗、高 PSRR,高精度低压差线性稳压器。ME6231系列稳压器内置固定电压基准,温度保护,限流电路,相位补偿电路以及低内阻的 MOSFET,达到高

三相光伏逆变并网电流电压双闭环仿真

三相并网发电系统的拓扑结构图展示了系统的基本构成和连接方式。图中,𝑖𝑑𝑐1为直流输入电源,𝐶1为输入直流母线滤波电容,𝑇1~𝑇6为三相逆变桥的6个IGBT开关管。这些开关管负责控制电流的流动,从而实现电力系统的稳定运行。 𝑅1为滤波电感𝐿1的内阻和由每相桥臂上、下管互锁死区所引起的电压损失。这部分电阻在系统中起到了限制电流、保护设备的作用。 𝑅2为滤波电感𝐿2的内阻,𝐿1

MS31211低压、大电流、单全桥驱动

MS31211 是一款低压、大电流、单全桥驱动。它 可应用于低电压及电池供电的运动控制场合,并且内 置电荷泵来提供内部功率 NMOS 所需的栅驱动电压。 MS31211 可以提供最高 3.2A 的峰值电流,其功 率电源供电范围从 1.8V 到 10V ,逻辑电源供电范围从 1.8V 到 6V 。 两个输入脚可以控制

没有电流设备的情况下的App电量测试

选择场景,缩小问题范围,找到问题步骤,定位问题,然后解决问题 在平时测试中的注意,如果有问题可以用电流计在精细测试得出结论。 百分比方法可以粗略的估计应用的耗电情况,如果应用出现问题,在系统设置就会出现异常排在前列持续操作某个场景1-2个小时,查看电流耗电情况,根据电池的总量计算wakelock在dumpsys batterystats下面的时间弱网条件下,可以通过charles等prox

大电流与小电流在检测原理上有区别吗

1 常用电流检测原理 1.1 分流器原理            被测量的电流在输入端电阻上Rshunt形成电压正比于测量电流,通过同相比例电路进行放大输出。             缺点: 输入电流减小时,需要更大的Rshunt;输入电阻Rshunt串入检测回路内将引起被测电流减小,检测结果无法反映被测电流。理想的电流表应该对电流回路中电流不产生任何影响,需要具有零输入阻抗和零电压负担。

如何理解电流镜负载的差分对的增益

我们知道最普通的电阻负载的差分对的差分增益是-gmRD,如果我们不希望输出是双端的,而是希望单端输出,那么使用电阻负载的差分对会导致增益变为原先的一半,因此引入了电流镜负载的差分对,它可以在保证增益与原先相同的情况下,将输出从双端改为单端。下面是一个电流镜负载的差分对的基本结构。 我们可以看到只有Vout一个输出,接下来我们绘制它的小信号模型,短路电压源,断路电流源,此时观察Q1的MOS,给

bms分流器测量电流的原理是什么

BMS(电池管理系统)中的分流器用于测量电流的原理基于欧姆定律(Ohm’s Law),即电流(I)通过一个电阻(R)时会产生电压(V)降。具体来说,分流器(也称为shunt电阻)是一个精确的、低阻值的电阻器,它被串联在电池的工作回路中。当电流流过这个分流器时,会在其两端产生一个与电流大小成正比的压降。 测量原理可以概括为以下几个步骤: 串联分流器:在电池的正极和负载之间串联一个分流器。这个分

电桩电流电压采样的要求及解决方案

电子发烧友网报道(文/李诚)在“碳中和”的共同目标下,汽车产业能源架构开始由化石能源向清洁能源转变,不断构建完整的低碳发展体系。碳中和的概念一经提出便引起了资本市场的躁动,电动汽车产业也呈异军突起之势屡创新高,与此同时,作为电动汽车配套应用的充电桩也开始进入大家的视野。电动汽车充电桩电流电压采样位置及其他要求 随着电动汽车的普及,人们对充电桩的要求也随之提高。在充电桩的应用中,电流电压采样会直接影

ZnO电阻片在低电场区域的泄漏电流及其电阻的负温度系数

在低电场区域,流过ZnO非线性电阻的泄漏电流小于1mA.泄漏电流不仅与施加的电压幅值有关,而且与温度高低有关。图2.6表示温度对泄漏电流的影响,温度越高,电子在电场作用下定向的运动就越激烈,导致泄漏电流增大。因此温度升高将导致电阳值下降,即ZnO 电阻呈现负温度特性。 一般以非线性电阻的直流1mA参考电压的变化来衡量非线性电阻的负温度系数。将Zn0非线性电阻的负温度系数。r定义为在规定的温度T时

PBV电流检测电阻±0.5% 10W 4-SIP通孔电阻器 脉冲耐受

EAK 电流检测精密电阻器系列为电流检测应用提供 4 端子通孔连接技术。该电阻器上的开尔文连接设计用于轻松安装散热器,即使在 0.0005Ω 至 1Ω 的极低电阻值范围内也能进行高精度测量。 电流检测精密电阻器 4端子通孔设计 电阻值 0.0005Ω 至 1Ω 公差选项为 ±0.5%、±1% 和 ±5% TCR 范围为 <±30 ppm/°C(+20°C 至 +60°C) 合适的散

晶体管类型及结构,晶体管的电流放大作用

晶体管类型及结构 1.3.1 晶体管的结构及类型根据不同的掺杂方式在同一个硅片上制造出三个掺杂区域,并形成两个PN结,就构成晶体管。采用平面工艺制成的 NPN型硅材料晶体管的结构如图1.3.2(a)所示,位于中间的P区称为基区,它很薄且杂质浓度很低;位于上层的 N区是发射区,掺杂浓度很高;位于下层的N区是集电区,面积很大;晶体管的外特性与三个区域的上述特点紧密相关。 它们所引出的三个电极分别为

电流监测利器!FP137宽共模范围高侧轨电流测量IC助您解决电流问题!

随着大量包含高精度放大器和精密匹配电阻的IC的推出,在高侧电流测量中使用差分放大器变得非常方便。高侧检测带动了电流检测IC的发展,降低了由分立器件带来的参数变化、器件数目太多等问题,集成电路方便了我们使用。本文将对FP137高端电流检测IC的原理进行介绍。 一、FP137电流检测原理 大家谈及到电流检测首先会联想到电阻,利用V=IR这个公式,电阻的本质就是会阻碍电流的流动,因此会在电阻的两端产生