VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南

2024-06-23 06:04

本文主要是介绍VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南

电流反馈和电压反馈具有不同的应用优势。在很多应用中,CFB和VFB的差异并不明显。当今的许多高速CFB和VFB放大器在性能上不相上下,但各有其优缺点。本指南将考察与这两种拓扑结构相关的重要考虑因素。

VFB和CFB运算放大器的直流及运行考虑因素

VFB运算放大器

对于要求高开环增益、低失调电压和低偏置电流的精密低频应用,VFB运算放大器是正确的选择。高速双极性输入VFB运算放大器的输入失调电压很少进行微调,因为输入级的失调电压匹配十分出色,一般为1至3mV,失调温度系数为5至15uV/C。在微调后,可实现低于20uV的输入失调电压。采用自稳零架构的运算放大器可提供低于5uV的失调电压,但我们在此不予考虑。

VFB运算放大器上的输入偏置电流(无输入偏置电流补偿电路)在+ 输入端和 -)输入端大致相等,范围为 1至5uA。有的FET输入运算放大器的输入偏置电流不到200fA,适用于静电计等应用。如下图AD549。
AD549

因输入偏置电流引起的输出失调电压可以归零,其方法是反相和同相输入端中的有效源电阻相等。这种方法对于偏置电流补偿VFB运算放大器无效,因为这类放大器的输入端有额外的电流误差源。在这种情况下,净输入偏置电流不一定相等,也不一定具有相同的极性。

VFB运算放大器在反馈网络控制着整体响应的应用中十分有用,比如有源滤波器应用。然而,有些VFB运算放大器是经过非完全补偿处理的,使用时必须超过其额定的最低闭环增益。

VFB运算放大器的简化模型是大家耳熟能详的,所有模拟电子教材中都有论述。

VFB架构适用于那些需要轨到轨输入和输出的低电源电压应用。

CFB运算放大器

另一方面,我们对电流反馈CFB运算放大器的了解较少,相关文献也不多。许多设计师选择VFB运算放大器,只是因为他们更了解这种放大器。

CFB运算放大器的开环增益和精度一般低于精密VFB运算放大器。

CFB运算放大器的反相和同相输入阻抗不相等,而且CFB运算放大器的输入偏置电流一般也是不相等且不相关的,因为 +输入端和 -输入端具有完全不同的架构。为此,外部偏置电流取消机制也不起作用。
CFB输入偏置电流的范围为 5至15uA,在反相输入端一般都较高。

由于CFB运算放大器一般是针对一个固定的反馈电阻值而优化的,因此,除设置闭环增益以外,其反馈网络的灵活性显得不足。这使得CFB运算放大器不适合多数有源滤波器,Sallen-Key滤波器除外,因为这种滤波器可以采用合适的固定反馈电阻进行设计。

CFB架构确实适用于轨到轨输入和输出。

VFB和CFB运算放大器的直流及运行考虑因素比较:

VFB运算放大器

高开环增益和直流精度
提供低失调电压
提供低偏置电流(JFET、CMOS或偏置电流补偿)(<200fA)
平衡输入阻抗
灵活的反馈网络
提供轨到轨输入和输出

CFB运算放大器

较低的开环增益和直流精度
较高的失调电压
反相输入阻抗低,同相输入阻抗高
输入偏置电流不如VFB低,并且匹配程度不如VFB
实现最佳性能需使用固定反馈电阻

VFB和CFB运算放大器的交流考虑因素

VFB运算放大器

VFB运算放大器的一个显著特点是,它们可在较宽的频率范围内提供恒定的增益带宽积。
另外,市场上有高带宽、高压摆率、低失真VFB运算放大器,其针对低静态电流采用了H桥架构。
VFB运算放大器适用于各类有源滤波器架构,因为其反馈网络非常灵活。

CFB运算放大器

CFB拓扑结构主要用于对高带宽、高压摆率和低失真有极高要求的场合。
对于给定的互补性双极性IC工艺,CFB一般可在相同量的静态电流下产生比VFB高的FPBW(因而具有较低的失真)。这是因为CFB几乎不存在压摆率限制。为此,其全功率带宽和小信号带宽大约相同。然而,高速VFB运算放大器中使用的H桥架构在性能上几乎与CFB运算放大器相当。
不同于VFB运算放大器, CFB运算放大器的反相输入阻抗极低。在反相模式下将运算放大器作为I/V转换器使用时,这是一种优势,因为其对反相输入电容的敏感度低于VFB。

CFB运算放大器的闭环带宽由内置电容以及外置反馈电阻的值决定,相对而言,是独立于增益设置电阻的(即从反相输入端到地的电阻)。这使得CFB运算放大器成为要求增益独立带宽的可编程增益应用的理想选择。
由于CFB运算放大器必须配合一个固定反馈电阻使用,才能实现最佳稳定性,因此,在除Sallen-Key滤波器以外,它们作为有源滤波器的应用是十分有限的。
在CFB运算放大器中,其反馈电阻上较小的杂散电容值可能导致不稳定。

VFB和CFB运算放大器的交流考虑因素比较:

VFB运算放大器

恒定的增益带宽积
提供高压摆率和高带宽
提供低失真版本
灵活的反馈网络
适合有源滤波器

CFB运算放大器

各种闭环增益下的带宽相对恒定
增益带宽积不恒定
针对特定工艺和功耗提供略高的压摆率和带宽(相比VFB而言)
提供低失真版本
实现最佳性能需使用固定反馈电阻
杂散反馈电容导致不稳定
难以用于非Sallen-Key型有源滤波器
低反相输入阻抗降低 转换器应用中的输入电容影响

VFB和CFB运算放大器的噪声考虑因素

VFB运算放大器

市场上有些精密VFB运算放大器的输入电压噪声不到1nV/Hz。多数JFET或CMOS输入VFB运算放大器的输入电流噪声低于100fA/Hz,有些则低于1fA/Hz。然而,总输出噪声不但取决于这些值,同时也取决于闭环增益和反馈电阻的实际值。
对于VFB运算放大器,反相和同相输入电流噪声一般相等,而且几乎总是不相关。宽带双极性VFB运算放大器的典型值范围为0.5pA/hZ
至5pA/Hz。当增加输入偏置电流补偿电路时,双极性输入级的输入电流噪声会提高,因为它们的电流噪声不相关,因而会(以RRS方式)增加双极性级的内生电流噪声。然而,偏置电流补偿很少用在高速运算放大器中。

CFB运算放大器

CFB运算放大器中的输入电压噪声一般低于带宽与之近似的VFB运算放大器。其原因在于,CFB运算放大器中的输入级一般在较高的电流下工作,从而使发射极电阻下降,结果导致电压噪声降低。
CFB运算放大器的典型值范围为 1至5nV/Hz。
然而,CFB运算放大器的输入电流噪声一般大于VFB运算放大器,因为其偏置电流普遍较高。CFB运算放大器的反相电流噪声和同相电流噪声通常不同,因为它们采用的是独特的输入架构,二者表示为独立的规格参数。多数情况下,反相输入电流噪声是二者中较大者。
CFB运算放大器的典型输入电流范围为 5至40pA/Hz。这往往可能占据主导地位,但在电压噪声占主导地位的超高闭环增益下除外。

计算噪声的最佳方法是写一个简单的电子表格计算程序,以自动进行计算,其中要包括所有噪声源。

VFB和CFB运算放大器的噪声考虑因素比较:

VFB运算放大器

提供低电压噪声(<1nV/Hz)
提供低电流噪声(JFET和CMOS输入)
反相和同相输入电流噪声相等且不相关
计算总噪声时必须考虑反馈网络和外部电阻值

CFB运算放大器

低电压噪声( 1至5nV/Hz)
较高的电流噪声( 5至40pA/Hz)通常是主要因素
计算总噪声时必须考虑反馈网络和外部电阻值

总结

对于多数通用或高精度低频、低噪声应用,VFB运算放大器通常是最佳选择。
VFB运算放大器也非常适合单电源应用,因为许多此类放大器提供轨到轨输入和输出。
VFB运算放大器具有极为灵活的反馈网络,因而适用于有源滤波器设计。
CFB运算放大器具有最佳带宽、压摆率和失真性能,但牺牲的是直流性能、噪声以及使用固定值反馈电阻的要求。
CFB运算放大器在有源滤波器中的应用仅限于Sallen-Key等同相配置。

VFB与CFB运算放大器总结:

选择VFB运算放大器可获得下列优点

高精度、低噪声、低带宽
轨到轨输入和输出
反馈网络灵活性
有源滤波器

选择CFB运算放大器可获得下列优点

超高带宽、压摆率和极低失真
不同增益下的带宽相对恒定
Sallen-Key有源滤波器

这篇关于VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086335

相关文章

(超详细)YOLOV7改进-Soft-NMS(支持多种IoU变种选择)

1.在until/general.py文件最后加上下面代码 2.在general.py里面找到这代码,修改这两个地方 3.之后直接运行即可

打造坚固的SSH防护网:端口敲门入门指南

欢迎来到我的博客,代码的世界里,每一行都是一个故事 🎏:你只管努力,剩下的交给时间 🏠 :小破站 打造坚固的SSH防护网:端口敲门入门指南 前言什么是端口敲门端口敲门的优点1. 增强安全性2. 动态防火墙规则3. 隐匿服务4. 改善日志管理5. 灵活性和兼容性6. 低资源消耗7. 防御暴力破解和扫描8. 便于合法用户访问9. 适用于不同类型的服务 端口敲

Aigtek:功率放大器可以分为哪几种

功率放大器是一种广泛应用于电子领域的设备,用于将低功率信号放大到较大功率水平。根据不同的工作原理、电路结构和应用领域,功率放大器可以分为多种类型。在本文中,安泰电子将为您介绍一些常见的功率放大器类型。   A类功率放大器:A类功率放大器是最简单、最常见的一种功率放大器类型。它具有较高的线性度,能够提供良好的信号放大效果。在A类功率放大器中,输出晶体管在整个信号周期内都保持导通状态,从而实现对

Chromium 调试指南2024 - 远程开发(下)

1. 引言 在《Chromium 调试指南2024 - 远程开发(上)》中,我们探讨了远程开发的基本概念、优势以及如何选择合适的远程开发模式。掌握了这些基础知识后,接下来我们将深入了解如何在远程环境中高效地进行Chromium项目的调试工作。 调试是开发过程中至关重要的一环,特别是对于像Chromium这样复杂的大型项目。远程调试不仅可以充分利用远程服务器的强大计算资源,还能确保开发环境的一致

服务器监控:运维行业的核心保障与第三方监控软件的选择

随着信息技术的飞速发展,企业IT架构日益复杂,服务器作为整个IT系统的核心,其稳定性和性能对业务的连续性至关重要。在运维行业中,服务器监控作为保障服务器稳定运行的关键环节,已经受到了越来越多企业的重视。本文将探讨服务器监控的重要性、挑战以及选择第三方监控软件的原因,并推荐一款优秀的服务器监控软件——监控易。 一、服务器监控的重要性     服务器监控是指对服务器硬件、操作系统、应用程序

Android WebView选择标记

前言 最近项目中有个需求是对后台返回的Html数据显示并且能够进行标记,点击标记还要能显示对应的笔记数据,那么这样的需求,对于同类型的小说来说是我们力所能及First想到的,但是你看遍所有的博客和Demo之后你会发现,他们使用的返回数据是完全不一样的,那么对于网页数据怎么来实现标记呢,首先选择获取文字就是一个问题,怎么获取到选中的文字,那么就只有重写WebView,对WebView的菜单栏进行编

在Qt5中创建、读取和写入JSON文件的完整指南

Qt5 提供了一个非常方便的JSON解析器,使得在C++中处理JSON数据变得非常简单。本文将详细介绍如何在Qt5中创建、读取和写入JSON文件。 读取JSON文件的示例 假设我们有一个名为test.json的JSON文件,内容如下: {"appDesc": {"description": "SomeDescription","message": "SomeMessage"},"appNam

写给Android开发的Binder指南

为什么选用binder? Linux 已经提供了管道、消息队列、共享内存和 Socket 等 IPC 机制。那为什么 Android 还要提供 Binder 来实现 IPC 呢?主要是基于性能、稳定性和安全性几方面的原因。 性能 Socket 作为一款通用接口,其传输效率低,开销大,主要用在跨网络的进程间通信和本机上进程间的低速通信。 消息队列和管道采用存储-转发方式,即数据先从发送方缓存区拷

android反馈Crash报告

此文章转载他人,担有所改动,,在全局获取异常有所改动 为什么需要反馈Crash报告?   做Android应用程序,要尽量避免程序Crash的发生。虽然说零Crash是程序员追逐的最终目标,但是现实的情况是,程序员只能尽量的减少Crash的发生,而几乎不可能完全杜绝Crash。也许,你认为你的应用的健壮性已经近乎完美,轻松的经受住了测试部门魔鬼般的考验,但是当你的应用发布到市

运算放大器(运放)低通滤波反相放大器电路和积分器电路

低通滤波反相放大器电路 运放积分器电路请访问下行链接 运算放大器(运放)积分器电路 设计目标 输入ViMin输入ViMax输出VoMin输出VoMaxBW:fp电源Vee电源Vcc–0.1V0.1V–2V2V2kHz–2.5V2.5V 设计说明 这款可调式低通反相放大器电路可将信号电平放大 26dB 或 20V/V。R2 和 C1 可设置此电路的截止频率。此电路的频率响应与无源 RC 滤