基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)

本文主要是介绍基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)

一、开发工具及使用技术

MyEclipse10、jdk1.7、mahout API、movielens数据集。

二、实现过程

1、定义用户-电影评分矩阵:

/**

 * 用户-电影评分矩阵工具类

 */

public class DataModelUtil {

   //定义用户-电影评分矩阵

   private static DataModel model = null;

      //初始化数据

   static{

      try {

       InputStream inputStream = DataModelUtil.class.getClassLoader().

              getResourceAsStream(Constant.dataPath+Constant.rateFile);

       File file = new File("d://"+Constant.rateFile);

        if (!file.exists())

                file.createNewFile();

        OutputStream outputStream = new FileOutputStream(file);

            int bytesRead = 0;

            byte[] buffer = new byte[1024];

            while ((bytesRead = inputStream.read(buffer, 0, 1024)) != -1) {

             outputStream.write(buffer, 0, bytesRead);

            }

            outputStream.close();

            inputStream.close();

            model = new FileDataModel(file);//实例化数据源

      } catch (Exception e) {

        e.printStackTrace();

      }

   }

  

   /**

    * 得到用户-电影评分矩阵

    * @return

    */

   public static DataModel getDataModel(){

      return model;

   }

  

   /**

    * 获取矩阵中的所有用户

    * @return

    */

   public static LongPrimitiveIterator getUserids(){

      try {

        return model.getUserIDs();

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

   /**

    * 获取矩阵中的所有电影

    * @return

    */

   public static LongPrimitiveIterator getItemids(){

      try {

        return model.getItemIDs();

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

   /**

    * 根据用户id和电影id找到评分

    * @param userid

    * @param itemid

    * @return

    */

   public static Float getPreferenceValue(long userid,long itemid){

      try {

        return model.getPreferenceValue(userid,itemid);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

2、计算用户之间的相似度:

/**

 * 相似度工具类

 */

public class SimilarityUtil {

 

   /**

    * 获取用户相似度对象

    * @param dataModel

    * @return

    */

   public static UserSimilarity getUserSimilarity(DataModel dataModel){

      return (UserSimilarity) getPearsonSimilarity(dataModel);

   }

  

   /**

    * 使用pearson皮尔森相似度算法

    * @param dataModel

    * @return

    */

   private static Object getPearsonSimilarity(DataModel dataModel){

      try {

        return new PearsonCorrelationSimilarity(dataModel);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

3、计算目标用户的最近邻居:

/**

 * 最近邻居工具类

 * @author line

 *

 */

public class NearestNUserUtil {

 

   /**

    * 最近邻居工具方法

    * @param userSimilarity

    * @param dataModel

    * @return

    */

   public static UserNeighborhood getNearestNUser(UserSimilarity userSimilarity,

        DataModel dataModel){

      try {

        return new NearestNUserNeighborhood(Constant.knn, userSimilarity, dataModel);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

4、定义推荐器:

/**

 * 推荐器工具类

 * @author line

 *

 */

public class RecommendUtil {

 

   public static Recommender getRecommend(DataModel dataModel,

        UserNeighborhood neighborhood,UserSimilarity userSimilarity){

      return new GenericUserBasedRecommender(dataModel, neighborhood, userSimilarity);

   }

  

}

5、计算MAE、precision、recall:

/**

 * 协同过滤算法评判标准类

 */

public class JudgeUtil {

  

   /**

    * 协同过滤算法评判标准方法

    */

   public static void getJudge(){

      System.out.println("计算平均绝对误差MAE、查准率、召回率开始");

      try {

        RandomUtils.useTestSeed();

           //这里使用的评估方法--平均差值

           RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

           /*

                我们创建了一个推荐器生成器

                因为评估的时候我们需要将源数据中的一部分作为测试数据,其他作为算法的训练数据

                需要通过新训练的DataModel构建推荐器,所以采用生成器的方式生成推荐器

           */

           RecommenderBuilder builder = new RecommenderBuilder() {

               public Recommender buildRecommender(DataModel dataModel) throws TasteException {

               UserSimilarity userSimilarity = SimilarityUtil.getUserSimilarity(dataModel);

               LongPrimitiveIterator userids = DataModelUtil.getUserids();

               UserNeighborhood neighborhood = NearestNUserUtil.getNearestNUser(userSimilarity, dataModel);

               return RecommendUtil.getRecommend(dataModel, neighborhood, userSimilarity);

               }

           };

           /*

           RecommenderEvaluator负责将数据分为训练集和测试集,用训练集构建一个DataModelRecommender用来进行测试活动,得到结果之后在于真实数据进行比较。

           参数中0.7代表训练数据为70%,测试数据是30%。最后的1.0代表的是选取数据集的多少数据做整个评估。

           此处第二个null处,使用null就可以满足基本需求,但是如果我们有特殊需求,比如使用特殊的DataModel,在这里可以使用DataModelBuilder的一个实例。

           */

           double score = evaluator.evaluate(builder, null, DataModelUtil.getDataModel(),

               Constant.trainCount, Constant.testCount);

           /*

                最后得出的评估值越小,说明推荐结果越好

                最后的评价结果是0.943877551020408,表示的是平均与真实结果的差值是0.9.

           */

           System.out.println("平均绝对误差MAE"+score);

          

        /*

                计算推荐4个结果时的查准率和召回率,使用评估器,并设定评估期的参数

                4表示"precision and recall at 4"即相当于推荐top4,然后在top-4的推荐上计算准确率和召回率

                查准率为0.75 上面设置的参数为4,表示 Precision at 4(推荐4个结果时的查准率),平均有3/4的推荐结果是好的

            Recall at 4 推荐两个结果的查全率是1.0 表示所有的好的推荐都包含在这些推荐结果中

          */

           RandomUtils.useTestSeed();

           RecommenderIRStatsEvaluator statsEvaluator = new GenericRecommenderIRStatsEvaluator();

          IRStatistics stats = statsEvaluator.evaluate(builder, null, DataModelUtil.getDataModel(),

               null, Constant.cfCount, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

          System.out.println("查准率:"+stats.getPrecision());

          System.out.println("召回率:"+stats.getRecall());

          

      } catch (Exception e) {

        e.printStackTrace();

      }

      System.out.println("计算平均绝对误差MAE、查准率、召回率结束");

   }

  

}

三、运行结果

1、用户-电影评分矩阵:

2、用户相似度:

3、用户最近邻:

4、推荐结果:

5、MAE、precision、recall结果:

源代码附件:https://download.csdn.net/download/u011291472/13056062

这篇关于基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028648

相关文章

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T