基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)

本文主要是介绍基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)

一、开发工具及使用技术

MyEclipse10、jdk1.7、mahout API、movielens数据集。

二、实现过程

1、定义用户-电影评分矩阵:

/**

 * 用户-电影评分矩阵工具类

 */

public class DataModelUtil {

   //定义用户-电影评分矩阵

   private static DataModel model = null;

      //初始化数据

   static{

      try {

       InputStream inputStream = DataModelUtil.class.getClassLoader().

              getResourceAsStream(Constant.dataPath+Constant.rateFile);

       File file = new File("d://"+Constant.rateFile);

        if (!file.exists())

                file.createNewFile();

        OutputStream outputStream = new FileOutputStream(file);

            int bytesRead = 0;

            byte[] buffer = new byte[1024];

            while ((bytesRead = inputStream.read(buffer, 0, 1024)) != -1) {

             outputStream.write(buffer, 0, bytesRead);

            }

            outputStream.close();

            inputStream.close();

            model = new FileDataModel(file);//实例化数据源

      } catch (Exception e) {

        e.printStackTrace();

      }

   }

  

   /**

    * 得到用户-电影评分矩阵

    * @return

    */

   public static DataModel getDataModel(){

      return model;

   }

  

   /**

    * 获取矩阵中的所有用户

    * @return

    */

   public static LongPrimitiveIterator getUserids(){

      try {

        return model.getUserIDs();

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

   /**

    * 获取矩阵中的所有电影

    * @return

    */

   public static LongPrimitiveIterator getItemids(){

      try {

        return model.getItemIDs();

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

   /**

    * 根据用户id和电影id找到评分

    * @param userid

    * @param itemid

    * @return

    */

   public static Float getPreferenceValue(long userid,long itemid){

      try {

        return model.getPreferenceValue(userid,itemid);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

2、计算用户之间的相似度:

/**

 * 相似度工具类

 */

public class SimilarityUtil {

 

   /**

    * 获取用户相似度对象

    * @param dataModel

    * @return

    */

   public static UserSimilarity getUserSimilarity(DataModel dataModel){

      return (UserSimilarity) getPearsonSimilarity(dataModel);

   }

  

   /**

    * 使用pearson皮尔森相似度算法

    * @param dataModel

    * @return

    */

   private static Object getPearsonSimilarity(DataModel dataModel){

      try {

        return new PearsonCorrelationSimilarity(dataModel);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

3、计算目标用户的最近邻居:

/**

 * 最近邻居工具类

 * @author line

 *

 */

public class NearestNUserUtil {

 

   /**

    * 最近邻居工具方法

    * @param userSimilarity

    * @param dataModel

    * @return

    */

   public static UserNeighborhood getNearestNUser(UserSimilarity userSimilarity,

        DataModel dataModel){

      try {

        return new NearestNUserNeighborhood(Constant.knn, userSimilarity, dataModel);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

4、定义推荐器:

/**

 * 推荐器工具类

 * @author line

 *

 */

public class RecommendUtil {

 

   public static Recommender getRecommend(DataModel dataModel,

        UserNeighborhood neighborhood,UserSimilarity userSimilarity){

      return new GenericUserBasedRecommender(dataModel, neighborhood, userSimilarity);

   }

  

}

5、计算MAE、precision、recall:

/**

 * 协同过滤算法评判标准类

 */

public class JudgeUtil {

  

   /**

    * 协同过滤算法评判标准方法

    */

   public static void getJudge(){

      System.out.println("计算平均绝对误差MAE、查准率、召回率开始");

      try {

        RandomUtils.useTestSeed();

           //这里使用的评估方法--平均差值

           RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

           /*

                我们创建了一个推荐器生成器

                因为评估的时候我们需要将源数据中的一部分作为测试数据,其他作为算法的训练数据

                需要通过新训练的DataModel构建推荐器,所以采用生成器的方式生成推荐器

           */

           RecommenderBuilder builder = new RecommenderBuilder() {

               public Recommender buildRecommender(DataModel dataModel) throws TasteException {

               UserSimilarity userSimilarity = SimilarityUtil.getUserSimilarity(dataModel);

               LongPrimitiveIterator userids = DataModelUtil.getUserids();

               UserNeighborhood neighborhood = NearestNUserUtil.getNearestNUser(userSimilarity, dataModel);

               return RecommendUtil.getRecommend(dataModel, neighborhood, userSimilarity);

               }

           };

           /*

           RecommenderEvaluator负责将数据分为训练集和测试集,用训练集构建一个DataModelRecommender用来进行测试活动,得到结果之后在于真实数据进行比较。

           参数中0.7代表训练数据为70%,测试数据是30%。最后的1.0代表的是选取数据集的多少数据做整个评估。

           此处第二个null处,使用null就可以满足基本需求,但是如果我们有特殊需求,比如使用特殊的DataModel,在这里可以使用DataModelBuilder的一个实例。

           */

           double score = evaluator.evaluate(builder, null, DataModelUtil.getDataModel(),

               Constant.trainCount, Constant.testCount);

           /*

                最后得出的评估值越小,说明推荐结果越好

                最后的评价结果是0.943877551020408,表示的是平均与真实结果的差值是0.9.

           */

           System.out.println("平均绝对误差MAE"+score);

          

        /*

                计算推荐4个结果时的查准率和召回率,使用评估器,并设定评估期的参数

                4表示"precision and recall at 4"即相当于推荐top4,然后在top-4的推荐上计算准确率和召回率

                查准率为0.75 上面设置的参数为4,表示 Precision at 4(推荐4个结果时的查准率),平均有3/4的推荐结果是好的

            Recall at 4 推荐两个结果的查全率是1.0 表示所有的好的推荐都包含在这些推荐结果中

          */

           RandomUtils.useTestSeed();

           RecommenderIRStatsEvaluator statsEvaluator = new GenericRecommenderIRStatsEvaluator();

          IRStatistics stats = statsEvaluator.evaluate(builder, null, DataModelUtil.getDataModel(),

               null, Constant.cfCount, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

          System.out.println("查准率:"+stats.getPrecision());

          System.out.println("召回率:"+stats.getRecall());

          

      } catch (Exception e) {

        e.printStackTrace();

      }

      System.out.println("计算平均绝对误差MAE、查准率、召回率结束");

   }

  

}

三、运行结果

1、用户-电影评分矩阵:

2、用户相似度:

3、用户最近邻:

4、推荐结果:

5、MAE、precision、recall结果:

源代码附件:https://download.csdn.net/download/u011291472/13056062

这篇关于基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028648

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log